M. Gubisch and S. Volkwein, POD for Linear-Quadratic Optimal Control In Model Reduction and Approximation: Theory and Algorithms, Eds, vol.SIAM, 2017.

S. Volkwein, Optimal Control of a Phase-Field Model Using Proper Orthogonal Decomposition, ZAMM, vol.35, issue.2, pp.83-97, 2001.
DOI : 10.1002/1521-4001(200102)81:2<83::AID-ZAMM83>3.0.CO;2-R

A. Antoulas, Approximation of Large?Scale Dynamical Systems, 2005.
DOI : 10.1137/1.9780898718713

A. Patera and G. Rozza, Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations; Version 1.0Tentative Rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering, Massachusetts Institute of Technology (MIT, 2006.

B. Haasdonk, Reduced Basis Methods for Parametrized PDEs?A Tutorial Introduction for Stationary and Instationary Problems In Model Reduction and Approximation: Theory and Algorithms, Eds, vol.SIAM, 2017.

M. Barrault, Y. Maday, N. Nguyen, and A. Patera, An ???empirical interpolation??? method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, vol.339, issue.9, pp.667-672, 2004.
DOI : 10.1016/j.crma.2004.08.006

URL : https://hal.archives-ouvertes.fr/hal-00021702

B. Haasdonk and M. Ohlberger, Reduced basis method for explicit finite volume approximations of nonlinear conservation laws, Proceedings of the HYP 2008, International Conference on Hyperbolic Problems: Theory, Numerics and Applications, pp.9-13, 2008.
DOI : 10.1090/psapm/067.2/2605256

M. Drohmann, B. Haasdonk, and M. Ohlberger, Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation, SIAM Journal on Scientific Computing, vol.34, issue.2, pp.937-969, 2012.
DOI : 10.1137/10081157X

S. Chaturantabut and D. C. Sorensen, Discrete empirical interpolation for nonlinear model reduction, Proceedings of the 48th IEEE Conference on Decision and Control and the 28th Chinese Control Conference, pp.15-18, 2009.
DOI : 10.1109/cdc.2009.5400045

S. Chaturantabut and D. C. Sorensen, A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction, SIAM Journal on Numerical Analysis, vol.50, issue.1, pp.46-63, 2012.
DOI : 10.1137/110822724

D. Ryckelynck, A priori hyperreduction method: an adaptive approach, Journal of Computational Physics, vol.202, issue.1, pp.346-366, 2005.
DOI : 10.1016/j.jcp.2004.07.015

D. Ryckelynck, Hyper-reduction of mechanical models involving internal variables, International Journal for Numerical Methods in Engineering, vol.1, issue.3, pp.75-89, 2009.
DOI : 10.1002/nme.2406

URL : https://hal.archives-ouvertes.fr/hal-00732247

R. Everson and L. Sirovich, Karhunen???Lo??ve procedure for gappy data, Journal of the Optical Society of America A, vol.12, issue.8, pp.1657-1664, 1995.
DOI : 10.1364/JOSAA.12.001657

URL : http://camelot.mssm.edu/publications/larry/Karhunen-Loeve.pdf

P. Astrid, S. Weiland, K. Willcox, and T. Backx, Missing Point Estimation in Models Described by Proper Orthogonal Decomposition, IEEE Transactions on Automatic Control, vol.53, issue.10, pp.2237-2251, 2008.
DOI : 10.1109/TAC.2008.2006102

URL : http://raphael.mit.edu/AstridTAC07.pdf

K. Carlberg, C. Bou-mosleh, and C. Farhat, Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, International Journal for Numerical Methods in Engineering, vol.35, issue.2, pp.155-181, 2011.
DOI : 10.1016/j.compfluid.2004.11.006

C. Farhat, P. Avery, T. Chapman, and J. Cortial, Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency, International Journal for Numerical Methods in Engineering, vol.92, issue.10, pp.625-662, 2014.
DOI : 10.1007/978-3-642-30023-3_28

F. Fritzen and M. Hodapp, ) method with GPU acceleration: towards three-dimensional two-scale simulations, International Journal for Numerical Methods in Engineering, vol.99, issue.1, pp.853-881, 2016.
DOI : 10.1115/1.3443401

F. Fritzen, L. Xia, M. Leuschner, and P. Breitkopf, Topology optimization of multiscale elastoviscoplastic structures, International Journal for Numerical Methods in Engineering, vol.2, issue.2, pp.430-453, 2016.
DOI : 10.1088/0965-0393/2/3A/011

G. Dimitriu, R. Stef?-anescu, and I. M. Navon, Comparative numerical analysis using reduced-order modeling strategies for nonlinear large-scale systems, Journal of Computational and Applied Mathematics, vol.310, pp.310-342, 2017.
DOI : 10.1016/j.cam.2016.07.002

K. I. Bathe, Finite-Elemente-Methoden, 2002.
DOI : 10.1007/978-3-642-96905-8

O. Zienkiewicz, R. Taylor, and J. Zhu, Finite Element Method, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01722149

C. Kelley, Iterative Methods for Linear and Nonlinear Equations, 1995.
DOI : 10.1137/1.9781611970944

L. Sirovich, Turbulence and the dynamics of coherent structures part I: Coherent structures, Q. Appl. Math, vol.65, pp.561-571, 1987.

I. Joliffe, R. Sandu, A. Navon, and I. M. , Principal Component Analysis Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations, Int. J. Numer. Methods Fluids, vol.76, pp.497-521, 2002.

F. Fritzen, M. Hodapp, and M. Leuschner, GPU accelerated computational homogenization based on a variational approach in a reduced basis framework, Computer Methods in Applied Mechanics and Engineering, vol.278, pp.186-217, 2014.
DOI : 10.1016/j.cma.2014.05.006

B. Haasdonk, M. Ohlberger, and G. Rozza, A Reduced Basis Method for Evolution Schemes with Parameter-Dependent Explicit Operators, ETNA Electron. Trans. Numer. Anal, vol.32, pp.145-161, 2008.

D. Wirtz, D. Sorensen, and B. Haasdonk, A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical Systems, SIAM Journal on Scientific Computing, vol.36, issue.2, pp.311-338, 2014.
DOI : 10.1137/120899042

D. Ryckelynck and D. Missoum-benziane, Multi-level A Priori Hyper-Reduction of mechanical models involving internal variables, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.17-20, pp.1134-1142, 0199.
DOI : 10.1016/j.cma.2009.12.003

URL : https://hal.archives-ouvertes.fr/hal-00461492

D. Ryckelynck, F. Vincent, and S. Cantournet, Multidimensional a priori hyper-reduction of mechanical models involving internal variables, Computer Methods in Applied Mechanics and Engineering, vol.225, issue.228, pp.28-43, 2012.
DOI : 10.1016/j.cma.2012.03.005

URL : https://hal.archives-ouvertes.fr/hal-00705783

D. Ryckelynck, L. Gallimard, and S. Jules, Estimation of the validity domain of hyper-reduction approximations in generalized standard elastoviscoplasticity, Advanced Modeling and Simulation in Engineering Sciences, vol.260, issue.0, 2006.
DOI : 10.1016/j.cma.2013.03.007

URL : https://hal.archives-ouvertes.fr/hal-01237733

Y. Maday, N. Nguyen, A. Patera, and G. Pau, Multi-Purpose Interpolation Procedure: The Magic Points, 2007.
DOI : 10.3934/cpaa.2009.8.383

URL : http://www.aimsciences.org/journals/doIpChk.jsp?paperID=3753&mode=full

U. Römer, S. Schöps, and T. Weiland, Stochastic Modeling and Regularity of the Nonlinear Elliptic curl--curl Equation, SIAM/ASA Journal on Uncertainty Quantification, vol.4, issue.1, pp.952-979, 2016.
DOI : 10.1137/15M1026535

D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, 2010.

B. Haasdonk, K. Urban, and B. Wieland, Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen--Lo??ve Expansion, SIAM/ASA Journal on Uncertainty Quantification, vol.1, issue.1, pp.79-105, 2013.
DOI : 10.1137/120876745