Asymptotic expansions of integrals, 1986. ,
Semilinear Schrödinger equations, 2003. ,
Exponential Decay of Energy of Evolution Equations with Locally Distributed Damping, SIAM Journal on Applied Mathematics, vol.51, issue.1 ,
DOI : 10.1137/0151015
Flatness and defect of non-linear systems: introductory theory and examples, International Journal of Control, vol.4, issue.6, pp.611327-1361, 1995. ,
DOI : 10.1007/978-1-4757-6802-2
Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures Appl, vol.68, issue.94, pp.457-465, 1989. ,
Contrôle interne exact des vibrations d'une plaque rectangulaire, Portugal. Math, vol.47, issue.4, pp.423-429, 1990. ,
Fourier series in control theory, 2005. ,
URL : https://hal.archives-ouvertes.fr/hal-00086863
Motion planning for the heat equation, International Journal of Robust and Nonlinear Control, vol.59, issue.60, pp.629-643, 2000. ,
DOI : 10.1017/CBO9780511609565
Global controllability and stabilization for the nonlinear Schr??dinger equation on an interval, ESAIM: Control, Optimisation and Calculus of Variations, vol.69, issue.2, pp.356-379, 2010. ,
DOI : 10.1137/S0363012900368405
Global Controllability and Stabilization for the Nonlinear Schr??dinger Equation on Some Compact Manifolds of Dimension 3, SIAM Journal on Mathematical Analysis, vol.42, issue.2, pp.785-832, 2010. ,
DOI : 10.1137/090749086
Contrôle de l'équation de Schrödinger, J. Math. Pures Appl, vol.71, issue.93, pp.267-291, 1992. ,
Introduction to nonlinear dispersive equations, 2009. ,
DOI : 10.1007/978-1-4939-2181-2
Exact boundary controllability of a hybrid system of elasticity, Archive for Rational Mechanics and Analysis, vol.52, issue.3, pp.193-236, 1988. ,
DOI : 10.1137/0313028
The heat and Schr??dinger equations: boundary control with one shot, Control methods in PDE-dynamical systems, pp.293-305, 2007. ,
DOI : 10.1090/conm/426/08194
Locally Distributed Control and Damping for the Conservative Systems, SIAM Journal on Control and Optimization, vol.35, issue.5, pp.1574-1590, 1997. ,
DOI : 10.1137/S0363012995284928
Flatness-based boundary control of a class of quasilinear parabolic distributed parameter systems, International Journal of Control, vol.11, issue.15, pp.751219-1230, 2002. ,
DOI : 10.1524/auto.2000.48.8.399
Exact Controllability for the Schr??dinger Equation, SIAM Journal on Control and Optimization, vol.32, issue.1, pp.24-34, 1994. ,
DOI : 10.1137/S0363012991223145
Controllability of the 1D Schrödinger equation by the flatness approach, IFAC Proceedings Volumes 19th IFAC World Congress, pp.646-651, 2014. ,
Null controllability of the heat equation using flatness, Automatica, vol.50, issue.12, pp.3067-3076, 2014. ,
DOI : 10.1016/j.automatica.2014.10.049
URL : https://hal.archives-ouvertes.fr/hal-00971484
Null controllability using flatness: A case study of a 1-D heat equation with discontinuous coefficients, 2015 European Control Conference (ECC), 2015. ,
DOI : 10.1109/ECC.2015.7330525
URL : https://hal.archives-ouvertes.fr/hal-01263652
Null Controllability of One-dimensional Parabolic Equations by the Flatness Approach, SIAM Journal on Control and Optimization, vol.54, issue.1, pp.198-220, 2016. ,
DOI : 10.1137/14099245X
URL : https://hal.archives-ouvertes.fr/hal-01073404
Controllability of the 1D Schrödinger equation using flatness. ArXiv e-prints, 2017. ,
Control of higher-dimensional PDEs. Communications and Control Engineering Series, 2013. ,
DOI : 10.1007/978-3-642-30015-8
Flatness-based tracking control of a piezoactuated Euler???Bernoulli beam with non-collocated output feedback: theory and experiments???, International Journal of Control, vol.11, issue.3, pp.473-491, 2008. ,
DOI : 10.1051/cocv:2003020
Flatness for a strongly degenerate 1-D parabolic equation, Mathematics of Control, Signals, and Systems, vol.4, issue.3, pp.28-2016 ,
DOI : 10.1093/amrx/abv013
URL : https://hal.archives-ouvertes.fr/hal-01178510
Dynamics and solutions to some control problems for water-tank systems, IEEE Transactions on Automatic Control, vol.47, issue.4, pp.594-609, 2002. ,
DOI : 10.1109/9.995037
URL : http://cas.ensmp.fr/~petit/papers/ieee2002/ieee2002.ps
Flatness of Heavy Chain Systems, SIAM Journal on Control and Optimization, vol.40, issue.2, pp.475-495, 2002. ,
DOI : 10.1137/S0363012900368636
URL : http://cas.ensmp.fr/~petit/papers/cdc02/064_TuA11-4.pdf
Finite element solution of diffusion problems with irregular data, Numerische Mathematik, vol.28, issue.2, pp.309-327, 1984. ,
DOI : 10.1007/BF01390130
A fundamental solution supported in a strip for a dispersive equation, Special issue in memory of Jacques-Louis Lions, pp.355-367, 2002. ,
Exact boundary controllability of the nonlinear Schr??dinger equation, Journal of Differential Equations, vol.246, issue.10, pp.4129-4153, 2009. ,
DOI : 10.1016/j.jde.2008.11.004
Local Exact Controllability and Stabilizability of the Nonlinear Schr??dinger Equation on a Bounded Interval, SIAM Journal on Control and Optimization, vol.48, issue.2, pp.972-992, 2009. ,
DOI : 10.1137/070709578
CONTROL AND STABILIZATION OF THE NONLINEAR SCHR??DINGER EQUATION ON RECTANGLES, Mathematical Models and Methods in Applied Sciences, vol.51, issue.12, pp.2293-2347, 2010. ,
DOI : 10.1090/cbms/106
Orthogonal polynomials, 1975. ,
DOI : 10.1090/coll/023
The heat equation, Pure and Applied Mathematics, vol.67, 1975. ,
Motion planning for a class of boundary controlled linear hyperbolic PDE's involving finite distributed delays. ESAIM: Control, Optimisation and Calculus of Variations, pp.419-435, 2003. ,
A new higher order chain rule and Gevrey class, Annals of Global Analysis and Geometry, vol.178, issue.Ser. A, pp.179-203, 1989. ,
DOI : 10.1007/BF00128298