R. Doherty, D. Hughes, F. Humphreys, J. Jonas, D. Jensen et al., Current issues in recrystallization: a review, Materials Science and Engineering: A, vol.238, issue.2, pp.219-274, 1997.
DOI : 10.1016/S0921-5093(97)00424-3

URL : https://doi.org/10.1016/s1369-7021(98)80046-1

A. Rollett, D. Srolovitz, R. Doherty, and M. Anderson, Computer simulation of recrystallization in non-uniformly deformed metals, Acta Metallurgica, vol.37, issue.2, pp.627-6390001, 1989.
DOI : 10.1016/0001-6160(89)90247-2

B. Radhakrishnan, G. Sarma, and T. Zacharia, Modeling the kinetics and microstructural evolution during static recrystallization???Monte Carlo simulation of recrystallization, Acta Materialia, vol.46, issue.12, pp.4415-4433, 1998.
DOI : 10.1016/S1359-6454(98)00077-9

B. Radhakrishnan, G. Sarma, and T. Zacharia, Monte Carlo simulation of deformation substructure evolution during recrystallization??????The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-96OR22464. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes., Scripta Materialia, vol.39, issue.12, pp.1639-1645, 1998.
DOI : 10.1016/S1359-6462(98)00376-5

L. Zhang, A. D. Rollett, T. Bartel, D. Wu, and M. T. Lusk, A calibrated Monte Carlo approach to quantify the impacts of misorientation and different driving forces on texture development, Acta Materialia, vol.60, issue.3, pp.1201-1210, 2012.
DOI : 10.1016/j.actamat.2011.10.057

W. Wang, A. Helbert, F. Brisset, M. Mathon, and T. Baudin, Monte Carlo simulation of primary recrystallization and annealing twinning, Acta Materialia, vol.81, pp.457-468, 2014.
DOI : 10.1016/j.actamat.2014.08.032

D. Raabe, Cellular Automata in Materials Science with Particular Reference to Recrystallization Simulation, Annual Review of Materials Research, vol.32, issue.1, pp.53-76, 2002.
DOI : 10.1146/annurev.matsci.32.090601.152855

K. Janssens, An introductory review of cellular automata modeling of moving grain boundaries in polycrystalline materials, Mathematics and Computers in Simulation, vol.80, issue.7, pp.1361-1381, 2010.
DOI : 10.1016/j.matcom.2009.02.011

L. Sieradzki and L. Madej, A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modeling in polycrystalline materials, Computational Materials Science, vol.67
DOI : 10.1016/j.commatsci.2012.08.047

H. Garcke, B. Nestler, and B. Stoth, A MultiPhase Field Concept: Numerical Simulations of Moving Phase Boundaries and Multiple Junctions, SIAM Journal on Applied Mathematics, vol.60, issue.1, pp.295-315, 1999.
DOI : 10.1137/S0036139998334895

N. Moelans, B. Blanpain, and P. Wollants, A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles, Acta Materialia, vol.53, issue.6, pp.1771-1781, 2005.
DOI : 10.1016/j.actamat.2004.12.026

S. Esedolu, Grain size distribution under simultaneous grain boundary migration and grain rotation in two dimensions, Computational Materials Science, vol.121, pp.209-216, 2016.
DOI : 10.1016/j.commatsci.2016.04.022

A. Harun, E. A. Holm, M. P. Clode, and M. A. Miodownik, On computer simulation methods to model Zener pinning, Acta Materialia, vol.54, issue.12, pp.3261-3273, 2006.
DOI : 10.1016/j.actamat.2006.03.012

G. Couturier, C. Maurice, and R. Fortunier, Three-dimensional finite-element simulation of Zener pinning dynamics, Philosophical Magazine, vol.175, issue.30, pp.3387-3405, 2003.
DOI : 10.1016/S1359-6454(98)00383-8

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

URL : http://www.ann.jussieu.fr/~frey/papers/levelsets/Osher S., Fronts propagating with curvature dependent speed.pdf

M. Bernacki, Y. Chastel, H. Digonnet, H. Resk, T. Coupez et al., Development Of Numerical Tools For The Multiscale Modelling Of Recrystallization In Metals, Based On A Digital Material Framework, AIP Conference Proceedings, pp.142-149, 2007.
DOI : 10.1063/1.2740840

URL : https://hal.archives-ouvertes.fr/hal-00572234

M. Bernacki, Y. Chastel, T. Coupez, and R. Logé, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scripta Materialia, vol.58, issue.12, pp.1129-1132, 2008.
DOI : 10.1016/j.scriptamat.2008.02.016

URL : https://hal.archives-ouvertes.fr/hal-00509731

M. Bernacki, R. Logé, and T. Coupez, Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials, Scripta Materialia, vol.64, issue.6, pp.525-528, 2011.
DOI : 10.1016/j.scriptamat.2010.11.032

URL : https://hal.archives-ouvertes.fr/hal-00577039

Y. Jin, B. Lin, A. D. Rollett, G. S. Rohrer, M. Bernacki et al., Thermo-mechanical factors influencing annealing twin development in nickel during recrystallization, Journal of Materials Science, vol.50, issue.589, pp.5191-5203, 2015.
DOI : 10.1016/S1359-6454(02)00090-3

URL : https://hal.archives-ouvertes.fr/hal-01159091

B. Scholtes, R. Boulais-sinou, A. Settefrati, D. Pino-muñoz, I. Poitrault et al., 3D level set modeling of static recrystallization considering stored energy fields, 3D level set modeling of static recrystallization considering stored energy fields, pp.57-71, 2016.
DOI : 10.1016/j.commatsci.2016.04.045

URL : https://hal.archives-ouvertes.fr/hal-01327901

L. Maire, B. Scholtes, C. Moussa, N. Bozzolo, D. Pino-muñoz et al., Modeling of dynamic and post-dynamic recrystallization by coupling a full field approach to phenomenological laws, Materials & Design, vol.133, pp.498-519, 2017.
DOI : 10.1016/j.matdes.2017.08.015

URL : https://hal.archives-ouvertes.fr/hal-01573836

H. Hallberg, A modified level set approach to 2d modeling of dynamic recrystallization , Modelling and Simulation in, Materials Science and Engineering, vol.21, issue.8, p.85012, 2013.

M. Elsey, S. Esedoglu, and P. Smereka, Diffusion generated motion for grain growth in two and three dimensions, Journal of Computational Physics, vol.228, issue.21, pp.8015-8033, 2009.
DOI : 10.1016/j.jcp.2009.07.020

URL : http://www.math.lsa.umich.edu/%7Eesedoglu/Papers_Preprints/elsey_esedoglu_smereka.pdf

M. Elsey, S. Esedolu, and P. Smereka, Large-scale simulation of normal grain growth via diffusion-generated motion, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.127, issue.3838, pp.381-401, 2010.
DOI : 10.1126/science.161.3838.276

URL : http://rspa.royalsocietypublishing.org/content/royprsa/467/2126/381.full.pdf

C. Mießen, M. Liesenjohann, L. Barrales-mora, L. Shvindlerman, and G. Gottstein, An advanced level set approach to grain growth accounting for grain boundary anisotropy and finite triple junction mobility, Acta Materialia, vol.99

M. Bernacki, H. Resk, T. Coupez, and R. E. Logé, Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework, Modelling and Simulation in, Materials Science and Engineering, vol.1717, issue.6, pp.965-0393, 2009.

J. Humphreys, G. S. Rohrer, and A. Rollett, Chapter 16 -Computer Modeling and Simulation of Annealing
DOI : 10.1016/b978-0-08-098235-9.00016-1

M. Shakoor, B. Scholtes, P. Bouchard, and M. Bernacki, An efficient and parallel level set reinitialization method ??? Application to micromechanics and microstructural evolutions, Applied Mathematical Modelling, vol.39, issue.23-24, pp.7291-7302, 2015.
DOI : 10.1016/j.apm.2015.03.014

URL : https://hal.archives-ouvertes.fr/hal-01139858

B. Scholtes, M. Shakoor, A. Settefrati, P. Bouchard, N. Bozzolo et al., New finite element developments for the full field modeling of microstructural evolutions using the level-set method, Computational Materials Science, vol.109, pp.388-398, 2015.
DOI : 10.1016/j.commatsci.2015.07.042

URL : https://hal.archives-ouvertes.fr/hal-01479197

G. Abrivard, E. Busso, S. Forest, and B. Appolaire, Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part I: theory and numerical implementation, Philosophical Magazine, vol.7, issue.28-30, pp.3618-3642, 2012.
DOI : 10.1080/12506559.1998.10511322

URL : https://hal.archives-ouvertes.fr/hal-00750399

Y. Mellbin, H. Hallberg, and M. Ristinmaa, A combined crystal plasticity and graph-based vertex model of dynamic recrystallization at large deformations, Modelling and Simulation in, Materials Science and Engineering, vol.23, issue.4
DOI : 10.1088/0965-0393/23/4/045011

R. Logé, M. Bernacki, H. Resk, L. Delannay, H. Digonnet et al., Linking plastic deformation to recrystallization in metals using digital microstructures, Philosophical Magazine, vol.14, issue.30-32, pp.30-32, 1080.
DOI : 10.1016/j.actamat.2006.10.022

F. Reitich and H. M. Soner, Three-phase boundary motions under constant velocities. I: The vanishing surface tension limit, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.126, issue.04, pp.10-1017, 1996.
DOI : 10.1090/S0273-0979-1992-00266-5

J. Humphreys, G. S. Rohrer, and A. Rollett, Chapter 5 -mobility and migration of boundaries, Recrystallization and Related Annealing Phenomena, pp.145-197
DOI : 10.1016/b978-0-08-098235-9.00005-7

B. Merriman, J. K. Bence, and S. J. Osher, Motion of Multiple Junctions: A Level Set Approach, Journal of Computational Physics, vol.112, issue.2, pp.334-363, 1994.
DOI : 10.1006/jcph.1994.1105

J. E. Bailey and P. B. Hirsch, The Recrystallization Process in Some Polycrystalline Metals, Proceedings of the Royal Society of London A: Mathematical, pp.11-30, 1328.
DOI : 10.1098/rspa.1962.0080

K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki, Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context, Computational Materials Science, vol.61, pp.61-224, 2012.
DOI : 10.1016/j.commatsci.2012.04.011

URL : https://hal.archives-ouvertes.fr/hal-00699554

K. Hitti and M. Bernacki, Optimized Dropping and Rolling (ODR) method for packing of poly-disperse spheres, Applied Mathematical Modelling, vol.37, issue.8
DOI : 10.1016/j.apm.2012.11.018

URL : https://hal.archives-ouvertes.fr/hal-00780744

Y. Jin, N. Bozzolo, A. Rollett, and M. Bernacki, 2D finite element modeling of misorientation dependent anisotropic grain growth in polycrystalline materials: Level set versus multi-phase-field method, Computational Materials Science, vol.104, pp.108-123, 2015.
DOI : 10.1016/j.commatsci.2015.03.012

URL : https://hal.archives-ouvertes.fr/hal-01148034