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1 | INTRODUCTION

Two-phase ows occur in many industrial processes as in metallurgy, nuclear plants, polymer and glass processing but also ir
nature such as volcano eruptions, ocean dynamics. An accurate description of the interfaces between immiscible uids become
important in particular when we need to study the wetting or dewetting on a substrate which can be chemically heterogeneous o
structured at microscale or nanoscale. Therefore, the numerical simulation of such industrial processes needs to gain in accurac
Indeed, in the literature, many authors work on various numerical methods to simulate the dynamics of two-phase ows driven

Abstract

Two-phase ows driven by the interfacial dynamics are studied by tracking implic-
itly interfaces in the framework of the Cahn-Hilliard theory. The uid dynamics is
described by the Stokes equations with an additional source term in the momen-
tum equation taking into account the capillary forces. A discontinuous Galerkin
nite element method is used to solve the coupled Stokes/Cahn-Hilliard equations.
The Cahn-Hilliard equation is treated as a system of two coupled equations corre-
sponding to the advection-di usion equation for the phase eld and a non-linear
elliptic equation for the chemical potential. First, the variational formulation of
the Cahn-Hilliard equation is presented. A numerical test is achieved showing the
optimal-order in error bounds. Second, the variational formulation in discontinuous
Galerkin nite element approach of the Stokes equations is recalled in which the same
space of approximation is used for the velocity and the pressure with an adequate
stabilization technique. The rates of convergence in space and time are evaluated
leading to an optimal-order in error bounds in space and a second order in time with
a backward di erentiation formula at the second order. Numerical tests devoted to
two-phase ows are provided on ellipsoidal droplet retraction, on the capillary rising
of a liquid in a tube and on the wetting drop over a horizontal solid wall.
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two-phase ow, phase- eld theory, nite element, discontinuous Galerkin, droplet retraction, capillary

rising

by the capillary forces. Ih?, the authors propose to track explicitly the interfaces using boundary integral method in the limit
of vanishing Reynolds number whereas Unverdi and Tryggvassad a front tracking method when the Reynolds number

is nite. These approaches are based on the Lagrangian description of interfaces. Another method tracking interfaces but als

meshes in bulk is the Arbitrary Lagrangian Eulerian (ALE) technique initially proposed by Hirt‘etNdwadays, the ALE
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method is used in various cases as developed in referehéeBespite the high level of accuracy of these techniques, both the
topological changes and the contact line dynamics remain very challenging to investigate accurately.

Another set of numerical methods are designed to track the interfaces implicitly using a volume marker. They are known as
the Volume of Fluid technique initially developed by Hirt and Nichéler as the level-set method proposed by Settiamd
Sethian and Smereka They are based on the Eulerian description and can straightforward describe topological changes like
coalescence or break-up of bubbles or drops. More recently, the behavior of the triple line has been implemented and validate
using both approaches as show#'it?. Note that Gross and Reuskérsummarized the various implicit tracking methods very
clearly and accurately.

In addition of these two main approaches of interface tracking, new numerical methods have been recently developed to
combine the level-set method and the interface tracking by Enright'éisald more recently by Bui et &P. In other direction,

Noble et all® developed a conformal decomposition nite element method in which nodes are added in the interfaces. This
method has been recently extended by Friegth a higher-order nite element method.

Recall that, in both approaches, the interfaces are considered sharp which naturally lead to a singular behavior at the triple
line, as explained in the Huh-Scriven's paradoxTherefore, to regularize the physics at the triple line, a slip length is com-
monly introduced®. To overcome such singularities, new alternative methods consider the interfaces not sharp, i.e. with a small
thickness. These techniques employ what we know as the concept of phase- eld introduced initially in statistical physics to
describe phase change or spinodal decomposftidrhe development of the phase- eld method in uid mechanics has been
summarized by Anderson et &l. One of the rst contribution of the application of the phase- eld theory to two-phase ows
has been proposed by Antanovskiilt is worth mentioning that the main advantage of the phase- eld method is that the normal
and the curvature are not required to determine the capillary forces involved in the momentum equation. For sharp interfaces
the topological changes like coalescence between two uid inclusions are purely geometry while with a phase- eld model the
short range interactions as van der Waals forces are implicitly taken into aé&dumwengrub and TruskinovsK§ developed
a Cahn-Hilliard model and proved how the di use model converges toward a sharp interface limit. The di use interface model
is also used to study the multiphase ows in micro uidf€s

This technique is also particularly well-adapted to study interaction with a solid substrate. The contact-line dynamics has
been studied by SeppecKémwho showed that the removal of the singularity at the triple line is due to a mass transfer across
the interface combined with a nite thickness of the interface. Jacdhsitudied the dynamics of contact-line using the di use
interface investigating the behaviors of the phase- eld and the chemical potential close to the triple line. A variational formulation
has been proposed by Qian et’&imainly to generalize the Navier boundary condition. The capillary-driven ows have been
also studied by Villanueva and Ambefg They investigated the wetting of drop on a solid substrate and the imbibition of a
liquid in a porous media. Biben and Jélprovided a contribution to study the wetting on nanostructured surfaces. They used
a bottom-up approach starting from a lattice Boltzmann model to go forward a Cahn-Hilliard equation taking into account a
surface wall energy. Yue et al. and Yue and Fen{ studied the e ect of the di use thickness to represent adequately the
sharp-interface limit.

However, the numerical solution of the non-linear and biharmonic Cahn-Hilliard equation coupled to uid dynamics is not
straightforward, in particular when dealing with complex geometries. Indeed, the typical size over which the phase eld changes
across the interface is small and thus requires a high spatial resolution. Moreover, far away from the interface, the di usion of the
chemical potential is weak meaning that the Cahn-Hilliard equation is a quasi-pure transport equation.*Jacgeimented
a compact- nite di erence scheme to solve the Cahn-Hilliard/Navier-Stokes equations. Badalasét deakloped a time-
splitting method with a spectral method in space. Based on a nite element method with a mesh adaptation, Villanueva and
Amberg?® developed a symbolic tool to solve the Cahn-Hilliard/Navier-Stokes equations.

In the present work, a discontinuous Galerkin nite element method has been chosen. The main feature of the technique is its
mass conservation accuracy applied to convective equitibnPietro and Eri® provided the basic concept of a discontinuous
Galerkin nite element technique in the goal to design and analyze this method in various cases. Error analysis for the Stokes
problem in the framework of discontinuous Galerkin method has been studied under minimal regularity by BatlicRetcall
that the numerical computation using a discontinuous Galerkin method to solve the phase- eld equation has been initiated by
Feng and Karakashidhamong others. According to a method proposed by B&keho developed a discontinuous Galerkin
method for biharmonic equation, Feng and KarakasHiastablished an optimal-order error bound by solving the fourth-order
equation when the polynomial degree is greater or equal to three. Ka§fetaled the Cahn-Hilliard equation as a system of two
second-order equations. This method is close to the technique to solve biharmonic equations splitting in two elliptic equations.
Gudi et al** employed this method with a discontinuous Galerkin method and proved the existence and uniqueness of the discrete
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problem. A discontinuous Galerkin formulation has been also developed by Well§’géhaihich the formulation is done on

the fourth-order equation and on the mixed nite element formulation in which the Cahn-Hilliard equation is decomposed in
two second-order equations. Numerical analysis of Cahn-Hilliard-Navier-Stokes equations have been investigated by Liu and
Riviére*. These authors proved the solvability both for symmetric and non-symmetric penalties of the discontinuous Galerkin
formulation. Nevertheless, this work is performed for uniform viscosity and density.

In our contribution, we extend the phase- eld method to study the uid dynamics but at small scale, thus the uid inertia
will be neglected. Consequently, we investigate the coupled Stokes/Cahn-Hilliard equations with a discontinuous Galerkin nite
element technique. Due to the viscosity variation over the interfaces, the generalization of the Stokes formulation is provided
for heterogeneous viscosity. We focus our investigation on the accuracy of the numerical solver and on the interaction betweer
the two uid phases and a substrate. A particular attention will be also devoted to the mass conservation.

The problem statement is presented in section 2 in which the Stokes/Cahn-Hilliard equations will be detailed. The numerical
method solving the phase- eld equation is presented in section 3 with a test to determine the truncation errors. The mass
conservation between phases is also investigated. Section 4 is devoted to the numerical method for the coupled Stokes/Cah
Hilliard equations. The space and time rates of convergence will be also studied. Finally, this section will be concluded with
the implementation of a mesh adaptation procedure. Two-phase ows will be investigated in section 5 with a rst example
describing the droplet retraction and a second case devoted to a capillary rising in which the ow is driven by the contact line
dynamics. The last problem is devoted to a drop wetting on a horizontal substrate.

2 | PHASE-FIELD FORMULATION OF TWO-PHASE FLOWS MODELING

Two phases are considered with respectively a dengind a dynamic viscosity, for the phase 1 and, and , for the phase
2. The phase eld method considers that the shift between the two phases occurs over a thin layer emprad sponding to the
di use interface thickness. Conventionally, the phase 1 is taken as the heavy phasg,*.e.,. In a space domain, | R
with its boundary) andd = 2 or 3, the phase at any material point with a posittoand at each timeis described by an
order parameter' .x;t/. By convention, the phase 1 is given by the order parameterl and the phase 2 by = *1 . The
function' can be also seen as a volume fraction meaning that the density written at every poistgifen by

Sl= AR A2 @)

2 7 )

Under the actions of external forces, boundary conditions and interaction between the two phases, the media changes in spa
and time requiring the balance equations of mass and momentum. Moreover, the dynamics between the two phases has to |
considered by writing an equation on the phase ‘eld

Let start by the description from the thermodynamic equilibrium point of view. The total free energy of the system writes as
a functional of and its gradient as followi$3*

FL1= g T (C1AV+ o f,0 1dS; ©
) w

Functionsf ..."; (' /andf,,." / are respectively the mixing free energy in volume and the wall free effetgyrhe boundary
) wisapartof) corresponding to solid walls.
The volume energy takes into account energies of each phase with stable states foundiorand the contribution due to
interfaces. According to the pioneer work of van der Wéals,,,."; (' /is written as
" V- v 2 % 2 Y-V
fo' ( /_ﬁ' 1/ +§n( fi°; (4)
for which is an energy by unit of length. Remark that the rst term of the right-hand side of (4) is the Ginzburg-Landau double-

well potential with two local minima in = ,1 . The wall energyf ,,." / takes into account the energy due to the triple line
created between the two phases in contact with a solid wall. In this case, the geometry of the interface has to verify a physical
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FIGURE 1 Sketch of the triple line between phadeand2 and the wall. The static contact angle is writtgn

requirement as shown FIGURE 1. According to the Young-Dupré law, the static contact anglie given by*®

cos (= 2wl (5)
for which is the surface tension between the two phasgsthe surface energy between the phasad the wall and ,, the
surface energy between the ph@send the wall.

The wall energy describing the wetting physics in a static equilibrium state is given by the rélation

I-3*|2/ Wl+ w2
+ : 6
4 2 ©)

The equilibrium state is obtained when the functioRfll ] reaches a minimum. The variational derivafivef F[' ] allows
to de ne two quantities

fw- /=% cos g

4. '2*1/ 5
Sl= ——=—=*(* ;AxE ; 7)

L 31* 2
4
for which equation (7) de nes the chemical potential in the bulk and equation (8) the wall chemical pétehtitile equilibrium

state, both (7) and (8) have to be equal to zero.
In one dimension case where the interface is de ned o0, the equilibrium phase eld is obviously given by the following

L'/= (' n cos i, AXE) ; (8)

solution H I
' x/=tanh g— )
2
Moreover, the macroscopic surface tension between the two uids already introduced above is de'hed by
20 1,
= d dx; (10)
E  dx '
*@
which gives with the solution (9) O
2 2
= — 11
3 (1)

This last equation is very important since it links a macroscopic propeatyd microscopic quantitiesand .

For vanishing inertia, the uid dynamics has to be described thanks to the Stokes equations in which the source term due
to interfaces must be introduced. The generalization of the Cahn-Hilliard equations coupled to the Navier-Stokes equations is
described by the model H according to the nomenclature of Hohenberg and Hélpdrirthe case of incompressible uids,
the model takes the following form

(u=0; (12)

*(P+( [2./D.u]+ g+ (' =0; (13)
%+(‘u:([MJK.WL (14)

R AN G (15)

whereu is the velocity eld, P the pressure taking into account the part of the chemical potential deriving from a potential.
Equation (12) describes the mass conservation for which each uid is assumed incompressible. Equation (13) corresponds t
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the momentum balance. The second term of the left-hand side of (13) is the viscous stress f@ whishthe rate-of-strain
tensor given by

:% (u+tu : (16)

The third term of (13) is the volume force due to gravity in whirls the gravitational acceleration and the last term of (13) is
the capillary force related to the chemical potential and the gradient of the order parameter. A demonstration of the momentum
equation in the framework of phase eld formulation can be fourft.in

Equation (14) is the Cahn-Hilliard equation which has to be coupled to the last equation (15) corresponding to the chemical
potential. The quantitiy ." / is the Onsager mobility.

Equations (12-15) have to be completed by initial and boundary conditions. For the kinematic quantities, the no-slip conditions
will be used on boundaries considered as solid walls. Natural (Neumann) boundary conditions setting the normal stress will
be also used depending on the problem at hand. For the chemical potential, the variational formulation of the Cahn-Hilliard
equation gives the natural boundary condifion

) _n. sy
)—n_o,AxE) : (17)
meaning that the ux of the chemical potential is equal to zero on the boundary.
For the order parameter, if we assume that the equilibrium is reached on the wall meaning that equation (8) is equal to zerc
at any time, the boundary condition writes

(' n= 3.1* "2
4
At the interface between the two uids, i.e. when= 0, the directional derivative of with an outward normat is proportional
to the cosine of ;. Outside of interface, the boundary condition 'oris reduced to an homogeneous Neumann condition.
According to molecular dynamics computations achieved by Matsumotd'gtthk time scale of the equilibrium of the wetting
at a solid wall is the order of nanosecond justifying the assumption used at the wall.

In the following, the Stokes/Cahn-Hilliard equations are written under dimensionless form with a characteristit length
velocity U, viscosity ; and density ; which will be precised as a function of the problem at hand presented in section 5. The
Onsager mobility is assumed constant. The chemical potential is reduced using the ratihe time is normalized by _U.

The dimensionless coupled system of equations is given by

cos i AXE) (18)

( u=0; (19)

*(P+( [2.'/D.u/]+%;.'/g+—e|_3—(':0; (20)
2 2CacCn

))'_t+(- u= (2 (21)

Sl=EElECn 2( (22)

in which dimensionless variables are written with the same notation as previously. Six dimensionless numbers arise de ned as
follows

2 U
Bo = i; (23) Ca=-1-; (24) Pe = ; (25)

<

Cn = (26) = 2 (27) , = 2 (28)
1

Ey

[y

The Bond numbeBo measures the ratio of gravity to surface tension forces characterized by the surface temsiterthe
capillary numbeiCacompares the viscosity e ect to the surface tension one. The third dimensionless nReiber Péclet
number comparing the di usion time scale of the chemical potential to the convective time scale which is always greater than
one. The Cahn numbéZn is the ratio of the di use-interface thicknessto the characteristic length scale. The normalized
density and dynamic viscosity are given by an arithmetic average:

1+, 1~*,
+

" (29)

+ N
*N

1

L= S

" (30)

N
N
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FIGURE 2 Triangulation of the domain and representation of interior faces in red and boundary faces in blue. The orientation
of the interior normal between two trianglks andK. is also drawn.

3 | NUMERICAL SOLUTION OF CAHN-HILLIARD EQUATION

The numerical method is rst focused on the Cahn-Hilliard equation which is a non-linear fourth-order partial di erential
equation needing a high level of regularity. Since the di usion of the chemical potential is very weak outside interfaces, the
parabolic behavior due to the advection term is predominant. Consequently, a discontinuous Galerkin nite element method has
been chosen to solve the Cahn-Hilliard equation advected with a known solenoidal velocity Ete time range if0; T].

3.1 | Discontinuous Galerkin nite element formulation
The continuous problem is

Problem 1 (Cahn-Hilliard problem) Find' .x;t/ and .x;t/ denedin «[0 ;T]suchas

))I—t+u (" (2 =050 <[0TI, (31)
x [+t 0 2%1/*Cn 2(% =0;in +[0 ;TI; (32)
txpt=0/=" gx/;in (33)
) .
)—n;f. /;on) ; (34)
)—n:O; on) : (35)

Moreover, the normal component of the velodity n is equal to zero on  for n the outward unit normal oh . The
boundary condition oh, eq. (34), has been taken under a general form because in applications the interaction with a wall for
instance involves a condition on normal derivative as presented in previous section. The boundary condition on the chemica
potential corresponds to the natural condition arisen from the variational form of equation (31) as it has been mentioned in Y

A discontinuous Galerkin method initially developed by Kay et‘%has been chosen to solve this problem. Tebe a
triangulation of the domain formed by nite element& with meshsizér = diam.K / such adl, = K" and = KET, K as
illustrated iNFIGURE 2. Furthermore, we consider a subset of fdedermed by interfaces between two distint mesh elements
K, andK. such af= = )K. &)K, represented in red iRIGURE 2 and boundary faces (in blue HGURE 2) given by
F =)K &) .Forinternal face, the unit normalis outward ofK. and inward oK, as itis shown iFIGURE 2. If Fj] gathers
all interfaces an(ﬂ’ all boundary faces, the set of facesis= FL a Fﬁ’. Finally, the local length scale at the fagenotedhg
is de ned according to Di Pietro and E¥h chap. 4 page 125

In the formulation below, some usual notations in the context of the discontinuous Galerkin method have to be presented.
First, the broken gradier(t, is de ned by*®

(h'hoa =0 " hx  AK E Ty (36)
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Moreover, at each interior fade, letdene' | ="' 5 the innervalue antl| ="' 4 the outer value. We de ne the jump
and the average of, by

ho =R (37)
[ 4! +
o= > h. (38)
The discontinuous nite element space is de ned by
Xn="V,EL%/, vy« EP;AKET,; (39)
with k the polynomial degree. This space belongs to the broken Sobolev space
HLT/="VEL?%/, v EHLK/;AKET, : (40)
The variational formulation of the Cahn-Hilliard problem takes the following f&tm
Problem 2. Find' |, , E X,, such that
Pel a,.wp; o/ + by.wy;' /= 0; forw, E X,; (41)
X Gy on/ Gy 2+ Cn2an Gyt n/ = 1n. Gt /s for g, E X, (42)
in which
E
&-Why n/= g (hWh (' ndV* g Cnme wy + (Wyne  p *G 5w, dS; (43)
FEF £
0 ) 1 - 1
bWy W/ = )—th;wh te (n'n UwpdV + - EaJh NeEd', w, *u, ng ", w, dS; (44)
FEF/

hF .
E .
lh-Gn;" 1/ = Cn? e o' n/GdS; forg, EXy:  (45)
FEFP £
The bilinear forma,,.w,,; ,/ follows from the formulation of the Laplacian operator with the symmetric interior penalty

introduced by Arnold® and Castillé? (see for more details Di Pietro and Efnc"aP- 4. According to ShahbaZi, the penalty
parametec: proportional toh* is taken equal to the produdk ( with =.k+1/.k +d/_d and

h meas)K /

$. = N measK/
F~ meas)K ./ meas)K ./

measK,/ ' measK./

forFEK &) ;
) (46)
forF E K. aK,:

Jﬂ max

The convective term of the phase- eld has been written according to the development of Di Pietro &hdvEnnan
upwinding ux approximation.

For the time discretization, a backward di erentiation formula (BDF) at opder6 is used. If tis the time step, the temporal
derivative at the timé¢ = n tof the' [ at the ordep is given by

"hl+o. (47)

yn 1P
Tt pl h

1=0
for which the coe cients |, can be found in the book of Stli and Mayefhap- 12. page 339

This time derivative determined by the previous formula is introducesj.w,;" ['/ leading to a source term obtained with
a combination of []‘*' with 1f | f pfollowing equation (47). Moreover, the non-linearities of the Cahn-Hilliard problem are
solved using a damped-Newton algoritfimThe scheme guarantees the global convergence for any initial guess. In practice,

the BDF scheme is convenient to program and provides good results of conservation apply to an advection equation as it ha
been applied by Ta et &P for p equal or greater than 2.
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FIGURE 3 Errorii' ,* ." (/i 2 as a function of mesh size for the three polynomial degrees.

3.2 | Spatial convergence rate

The previous problem has been implemented in the Rheolef C++ nite element libteested on a numerical problem proposed
by Kay et al*°. The Cahn-Hilliard equation is solved with a velocity eld given by

u=f.rly;*x/t Axyl E[*1;1] % (48)
* u_—
with  .r/ = 1+ta”h[2'1 3. andr = 2+ 2, (49)

ina domain = [*1;1] 2. This velocity eld is a vortex centered in the origin with an amplitude decreasing exponentially with
the radial distance from the origin. The exact solution of the phase- eld given by

' o= tcos.x /cos.y/; Ax;yl E [*1;1] ? andt E [0; 1]; (50)

is imposed by adding an adequate source termin eq. (31). The range of time is tfik@lih The domain has been discretized
with a regular triangular elements wille, 23, 32, 45 and64 elements over each Cartesian coordinate.

We perform the numerical experiment with Cahn number equ0tb and for a Péclet number equal306. The temporal
numerical scheme at the second order (BDF-2) has been used with a time step ddjifal Ttree polynomial degrees have
been tested witk = 1, 2 and3. Errors between the numerical solution and the exact solution have been computid aétm
de ned as follows

1

az

v, , =~ v2dVS
AvA rEvdVS
p q

FIGURE 3 depicts errors averaged over the time rajig®:1] as a function of the mesh size both for the phase eld and
the chemical potential. For each polynomial degree, errors beh&@éas The exponent has been determined by non-linear
tting. For k = 1, n are equal t®2:08 and2:00, fork = 2, n = 3:01and3:17 and fork = 3, n = 4:78 and5:18 respectively
for' and . As expected, errors computedli norm behave approximately &hk*1/ both for the phase eld and for the
chemical potential showing that the numerical implementation is optimal-order in error bounds as it is proved by Kd§.et al.

3.3 | E ect of the Cahn number on mass conservation

As already mentioned above, the Cahn-Hilliard model conserves the mass over the entire domain. Nevertheless, due to th
di usion over the interface, the mass conservation of each phase is an important issue. According to Jaaodhiue et

al.%, it is expected that the total free energy de ned by equation (3) decreases with the time by reducing the area of interfaces
between the two phases leading to a spontaneous formation of spherical inclusions. But the energy can also decrease due to't
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(@h=4 10? (b)h =2 102

FIGURE 4 a_a, as a function of for three Cahn numbers and mesh size equal th @) 102 and (b)h =2 1072.

shrinkage of drops similar to an Ostwald ripening. Nevertheless, if the order parameter can keep the stable valuglequal to
far away from the interface, the shrinkage can be reduced. Moreover, the Cahn number plays an important role in this dynamic:s
since this number controls the thickness of interfaces. According to Lowengrub and Truskitfpis&asymptotic limit when

Cngoes to zero converges toward a sharp-interface description. Nevertheless, if the Cahn number is too small the Cahn-Hilliarc
equation becomes too sti which penalizes strongly the numerical method. So, itis important to nd a Cahn number acceptable
from the point of view of the numerical solution and also from the point of view of the physics.

To test the e ect of the Cahn number on the spontaneous shrinkage of a drop, a simple case has been made in which a stat
spherical drop with an initial radius equal1o2is introduced in a liquid at rest. Three Cahn numbers have been investigated:
Cn =10",5 102 and10?. The numerical simulations are made in 2d-axisymmetric geometry for whichE [0; 1:5] «

[*1 :5;1:5]. Two mesh sizes have been also tested: a coarse mesh with 102 and a ne mesh witth =2 10?2,

FIGURE 4 depicts the behavior of the drop radius as a function of time for the three Cahn numbers and for the two mesh
sizes. Clearly, the drop shrinks spontaneous when the Cahn number is su ciently large. The shrinkage rate increases with the
Cahn number. This general behavior is shown whatever the mesh size used in the numerical computations. It is noteworthy tha
the shrinkage is prevented when the Cahn number is eqd&?o We observe a small shrinkage of the drop at the beginning
of the simulation mainly due to the fact that initially the chemical potential is not in equilibrium state. This point is a numerical
artefact because the initial conditions are only applied on the order pardmeter

The absence of drop shrinkage can be explained due to the previous analysis provided by Yudretesd, they determined
the critical drop size below which drop shinks spontaneous. This critical drop radius normalized by the initial drop size is given
by

u

16
re= " 23—_V Cn; (51)

in which V is the volume of the computational domain With V = 27 _4, this critical radius is equal to 0.7, 0.6 and 0.4
for Cn = 10" ,5 102 and107? respectively. So, for the smallest Cahn number, the initial drop size is larger than the critical
radius preventing the spontaneous shrinkage. From this preliminary study, the spontaneous shrinkage is avoided when the Cal
number is less thah0? which is a value acceptable for the numerical scheme. This result con rms the previous conclusion
drawn by Yue et aPS. The important point to notice is that the numerical domain has not to be too large to prevent the di usion
between phases. This means that the Cahn-Hilliard theory is mainly adapted to mesoscale investigations. According to Yue e
al.>%, the accuracy on the surface tension is proportion@lrfoand on the mixture properties as the viscosity scaledike

From this numerical test, the Cahn-Hilliard theory can be applied to study two-phase ows when the Cahn number is su -
ciently small. A typical value 010 is enough to prevent the spontaneous shrinkage. Decrease the Cahn number b&fw to
leads to a strong sti ness required a high mesh resolution. Consequently, for the numerical appli€atiorig? will be used
for a moderate numerical volume to avoid the spontaneous shrinkage.
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4 | NUMERICAL SOLUTION OF CAHN-HILLIARD AND STOKES EQUATIONS

The continuous problem is similar to the set of equations (19-22) given in Y 2. Initial and boundary conditioasdor can
be written in general form as in equations (33-35). To take into account the boundary conditions for which velocity or stress are
imposed, the boundary of is shared between  for which

u= up; (52)

and) \ where
n=ty; (53)

suchag &) y=¢and) = ) p&) .Thestresstensorisgivenbyl +2 .' /D.u/ with| the unittensor. Boundary
faces,Fr?, are now shared in two sub—sétﬁ;D andFrE’;N corresponding t)  and)  respectively.

A discontinuous Galerkin nite element method is also used to solve the Stokes equations. As it will be detailed below velocity
and pressure are approximated at the same polynomial degf&e the discontinuous nite element spaces are de ned by

V, ="u, ELZ/ %ux EP AK ET (54)
Q =", EL%/; qx EP, AKET, : (55)

4.1 | Discontinuous Galerkin nite element formulation of Stokes problem

Since the Stokes equations are in quasi-steady state, the reference of the time is removed in the following to simplify the
notation. The variational formulation follows the method initially introduced by Cockburn®tahich has been studied theo-
retically by Di Pietro and Er#. The heterogeneity of the viscosity needs to generalize the formulation according to the previous
developments achieved in heterogeneous di usiot2?- 4 The discrete variational formulation writes:

Problem 3 (Stokes problem)Find u,, E V;, andP,, E Q,, such that
Upvpl+ vy P/ = vl Ay E (56)
Up; G/ * PG/ = 0; Ag, E Qy; (57)
with

E
UnsVp/ = 2 2 Dy.uy/ 0 Dyvp/dV o+ e C gful [vl* 2Dyuy/ ng | vy ¥

E .

FEF|aF>® £

2 Dp.vy/ ng  u, dS; (58)
E
Un G/ =" 2 Gh(n UpdV + g [ul ne G dS; (59)
L M FEF! £
_ Bo . 3 . E *
Ca 2 2CacCn FEFD® £
E
e thn VhdS; (60)
CFERME
E
Phi /= g he P oy dS: (61)
FEF) £
The viscosity at the facE and the weighted averade’ , are de ned by*®

21

h h
F~ 7 - (62)

h o

+V* + *V+
vh!—h++'jh: (63)
h™ h

Clearly, when the viscosity is constant, the usual arithmetic average is found.



PIGEONNEAUET AL. 11

4.2 | Algorithm of Cahn-Hilliard/Stokes solver

The algorithm developed to solve the coupled Cahn-Hilliard/Stokes problem is based on the sequential steps. First remark tha
as for pressure eld, the chemical potential does not need initial solution. Nevertheless, a particular caution is needed on the
initial chemical potential eld to avoid numerical instabilities due to a non smooth solution #¥hile the initialization of

the order parameter is easy to do, the chemical potential is not known. To initiate the phase- eld solution, we only solve the
Cahn-Hilliard equation without motion over few hundreds of time steps before to solve the full problem.

Now, consider that at the time stepthe elds’ [\, [, up andP/ are known, the algorithm is decomposed as follows

1. Determination of E*l, {]*1 by solving Problem 2 using a BDpscheme for which the velocity eld is extrapolated at
the same order that the BDF scheme using the forward di erence foffhula
o ® 00 1/ "Lyt 40, P 64
u,” = | Up . : (64)
1=1
2. Determination oﬂﬂ"1 and Pr?“l by solving Problem 3 in which the capillary source term given by the last term of the

right-hand side of (20) is determined by the previous solutionéf, .

This procedure is reproduced until the nal time of the computation. To control the rates of convergence of our algorithm, a
test of comparison with an exact solution is described below.

4.3 | Spatial and time rates of convergence

To control spatial and time rates of convergence of our numerical algorithm, we enforce a body source term in momentum and
Cahn-Hilliard equations to impose an exact solution. The problem is considered in a two-dimensional space wit/ E
[0; 1]2. According to the previous test of Dong and Shethe exact phase- eld solution is taken as follows

X;t/ =cos. x /cos.y /sin.t/: (65)
Using the de nition of the chemical potential, the exact solution a§
x;t=" " 2+2 2Cr*l (66)

with ' given by (65).
The two components of the velocity are chosen as follows

u.x;t/ = sin. x /cos.y /sin.t/; (67)
v.X;t/ = *cos. x /sin.y/sin.t/: (68)

Contrary to Dong and Shéf the pressure has not to be speci ed sipés imposed by the mass conservation. The two source
terms which must be added in momentum equation (20) and in Cahn-Hilliard equation (21) are given in Appendix A. Remark
that the velocity eld is such that the rate-of-strain tensor is a diagonal tensor. The velocity solution is also used as boundary
conditions while homogeneous Neumann conditions are imposed bdtheiod .

We made tests without gravity force which is replaced by the source test enforcing the solution. The Cahn number is taken equa
to 107, the capillary number is set equalt@nd the Péclet number #0. The viscosity ratio is = 10™ . To control the spatial
convergence, ve mesh grids have been used with a regular triangle mesh with gigaal toj1_16,1 231 321 451 64]
which are uniformly logarithmically spaced. The convergence rate is determined by computirfgrtbems both fot , and
u. The numerical computations are achieved in time range between Q @with a time step equal to 10 and with BDF-2
for the time integration schemEIGURE 5-(a) depicts the logarithm of errors both for andu as a function of the logarithm
of h. Polynomial degrees have been set equaldaad?2 for both' , andu. Whatever the polynomial degree and the eld, the
error behave aB". A non-linear tting givesn = 1:94, 1:91 and1:98 whenk = 1 and3:93, 3:18 and3:01 whenk = 2 for ' ,
andu respectively. These results show that errors behaves approxima@lidd/. The error bounds of our numerical solver
is consequently optimal-order in space.

The time rate of convergence is determined on a meshtgsidl_32. The Cahn, capillary and Péclet numbers are taken at
the same values that previously used for the spatial rate of convergence. The time step rangegd®@m 100 The nal
time is set equal at_2. Only, the BDF-2 scheme has been tested. A second order polynomial approximation is taken both for
', andu. FIGURE 5-(b) presents the logarithm of errors both for andu as a function of the logarithm oft. Temporal
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FIGURE 5 Convergence of, andu as a function oh (a) and t (b).

errors behave ast". A non-linear tting givesn = 1:98, 1:86 and2:04for ' , andu respectively meaning that the second
order is veri ed.

4.4 | Mesh adaptation

The numerical scheme introduces a mesh adaptation loop in order to capture the interface with a better spatial resolution. Th
main principle of the auto-adaptive mesh follows the procedure provided by Castro-Di&Z.&ktaé. criterion used here is based
on the total energy variation. Indeed according to Jacghifrcan be shown that the temporal derivative of the total energy is
given by

DE _,

: 1, :
o . . . Ui+ = . . .
= g 2. /DD S (0 (S dV (69)

The criterion is then chosen to well describe the dissipation of the total energy.
From an initial mesh, a solution is computed. The criterion is given by

p— 1 . i 1 1 .
c=2 . D Dk o( (L (70)

which depends also on the polynomial approximations taken battabg . If the polynomial degrees are di erent, a projection
is proceeded. The mesh adaptation procedure uses the anisotropic mesh generatSt B Gtrategy is based on a metric
determined from the Hessian of the scalgiven by (70). The procedure is repeated at any time which required an interpolation
step between two successive time steps.

We postpone the numerical examples in the next section showing the mesh adaptation.

5 | NUMERICAL RESULTS ON TWO-PHASE FLOWS

In this section, three numerical problems are presented. The rst case considers the drop retraction in a liquid at rest, the secon
will be carried out on the capillary rising of a liquid to see the interaction with wall. The last case will be devoted to the wetting
dynamics of a drop on a horizontal solid wall.

5.1 | Ellipsoidal droplet retraction

A non-spherical droplet composed by a uid with a dynamic viscosjtgarried in another uid at rest with a dynamic viscosity
, backs to the spherical shape to reduce the surface energy. This phenomena is fundamental to nd the constitutive equatiol
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FIGURE 6 Initial con guration of an ellipsoidal droplet with a major axis equal@® and a minor axis equal t0:4564
Boundary conditions both fdr, andu are also indicated.

of emulsiorf?. If the droplet is lightly deformed and in the limit of vanishing Reynolds number, the characteristic sizes of the
droplet behave exponentially with tirfie

In this problem the gravity is removed meaning that the Bond number is an irrelevant dimensionless number for this particular
case. Since only the capillary number is involved in this physics, the velocity scale is chosen in order to set the capillary number
equal to one. Consequently, the velocity scale is obviously equal tp Only the viscosity ratig remains as dimensionless
number from the point of view of the physics.

Beside, the Cahn and the Péclet numbers related to the phase- eld modelling have to be speci ed. The physical length scale o
interface is around few nanometers meaning that the ratio of this interface thickness and the droplet size is too small. Fortunately
the sharp-interface behavior is obtained for a larger Cahn number according the previous work of Yiie baeover, we
previously shown in subsection that the reduction of free energy due to the Cahn-Hilliard equation becomes negligible when
the Cahn number becomes equal 6% . Consequently, the Cahn number is set equali®. Moreover, to reduce the e ect of
the di usion between the two phases, the Onsager mobility can be chosen su ciently low meaning that the Péclet number can
be taken greater than one. Here, the Péclet number is taken eq@al to

Initially, the droplet shape is considered as an ellipse with a minoraaaisd a major axi®. The characteristic time scale
is given by2az , in which ay is the radius of the drop obtained in steady-state regime observed when the time goes to
in nity. The problem is formulated in 2d-axisymmetric space. The domais extended ovgr-axis until a radius equal to 3. In
z-axis, the domain is betweenk [*3 ; 3]. Obviously, the mass conservation leadsgo= * a2b when the axis of revolution
is over the major axiszIGURE 6 presents the initial con guration of the droplet and the boundary conditions onandu.

The major and minor axis have been set equét@mnd0:4564respectively in order to hawa, = 1_2 when the time goes to

in nity. From the numerical approximation, a same polynomial degree equal to 2 is used for all unknowns. A BDF-2 scheme
is chosen for the time integration. At the boundaries, the no-slip condition is used for the velocity eld on the right boundary
while on the top and on the bottom frontiers, stress free condition is used to reduce the e ect of the nite domain. Both on
and elds, homogeneous Neumann condition is imposed. Initially, the velocity eld is set equal to zero and the phase- eld
solution is initialized using the method indicated at the beginning of this section.

The deformation of the droplet remains moderate to compare with the asymptotic solution obtained from Frankel and
Acrivos®3. When the deformation is weak, the square di erence between the major and the minor axis are given according to
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FIGURE 7 Order parameter and mesh grids around the drop during the viscous retraction,with0™ at the time (aj = 0,
(b)t=0:5,(c)t=1 and (d)t = 2.

Frankel and Acrivo$® and Ma etone and Minal&* by the following solution
2 * a2t/
———— =exp[*f ../ 71
7w el (1)
with
_ 80.1+,/ ]
T 3+2,/16+19,/

f (72)

andt in dimensionless unit.

Two numerical simulations have been made with a viscosity ratio equedfo The rst computation is performed on a
x mesh grid with a mesh size equal th4 1072 . The second computation has been done with a mesh adaptation loop with
the criterion de ned in subsection 4.4. To illustrate the mesh adaptation procedure, mesh grids obtained during the numerical
procedure are provided RIGURE 7 with the order parameter eld. At the tinte= 0, the mesh is already adapted due to the
pre-computation of the Cahn-Hilliard equation. Three other snapshots are depiBi&URE 7 at (b)t = 0:5, (c)t = 1 and
(d)t = 2. The nest mesh size is set equal2Z® 10 while the largest mesh size is equallta2. Obviously, the nest meshes
are concentrated over the interface between the two uids.

FIGURE 8 shows the behavior of?* a?/.t/_.b?* a?/.0/ as a function of time for = 10" both for the numerical simulations
performed without and with mesh adaptation. These solutions are compared with the approximate solution given by equation
(71) showing that the numerical computations are in perfect agreement with the asymptotic solution.

At the end of numerical runs, the droplet should be perfectly spherical with a radius equal i control this asymptotic
behavior, the pressure is plotted overand z-axis directions inFIGURE 9 for the numerical run achieved without mesh
adaptation. The Laplace's law is very well veri ed since the pressure jump is egdialtexpected since the capillary number is
equal to 1 and the radius is equallta2 The two curves plotted over the two orthogonal direction show that the good isotropy of
the solution. Nevertheless, the two curves are not perfectly superimposed. It is mainly due to the non-compliance of the mirror
symmetric over the-axis imposed by the physics. Indeed, to be perfectly symmetric the velocity eld due to the retraction
should verify the mirror symmetry over theaxis. However, due to residual imperfections in the mesh the symmetry is not
exactly full led numerically explaining why the curves are not completely superimposed. It is noteworthy that the disagreement
stays small.
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FIGURE 8 .b?* a?/.t/_.b?* a?/.0/ vs.tfor , = 10" obtained numerically without mesh adaptation (solid line) and with mesh
adaptation (dashed line). Dotted line curve is the approximative solution given by eq. (71).

FIGURE 9 pvs.r orzfor , = 10" at the end of the numerical run without mesh adaptation.

Numerical computations have been also made for other viscosity r&tiG&/RE presents the time behavior af *
a?l.t/_.b** a2/.0/ as a function of time obtained numerically for ve viscosity ratiosqual tol0, 102, 10, 1and10. The
exponential decrease is very well captured numerically for all viscosity ratios. Due to a decrease of the retraction rate when the
viscosity ratio is large, the time to observe a decreask?df a?/.t/_.1?>* &2/.0/ by two orders of magnitude must be increased.
While for , = 10™, a total time equal to 2.5 is enough, it is required that the total time must be a2@ufod, = 10. Note
also that the results for the two smaller viscosity ratio are approximately similar corresponding to the limit for consider the uid
inclusion as a bubble. To perform the numerical integration, the time step is taken ed@& twhen the viscosity ratio is
smaller tharl and t = 10" for , = 10. The comparison with equation (71) shows that the role playing by the viscosity of the
droplet is well established even if the numerical solution is found in a nite domain while the approximate solution has been
established in an in nite domain. Nevertheless, remark that the rate of retraction given by the logarithmic time derivatives of
2 * a2/t _.b?* a?/.0/ obtained numerically are slightly smaller than the prediction given by eq. (72). This result comes from
the e ect of the nite domain used in the numerical simulation. Indeed, as it is well-known in Stokes ow, the decreasing of the
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FIGURE 10 .b?* a/.t/_.b?* &2/.0/ vs.tfor , = 10" ,10?, 10", 1 and10. Solid lines are the numerical results and dashed
lines come from the approximative solution given by eq. (71).

ow is very low in space. The fundamental solution of the Stokes ow due to the source point decredsesvés r the radial
distance from the source pointSo, it is expected with a nite domain simulation to see this e ect since the no-slip boundary
condition is imposed at a nite distance.

In subsection the mass conservation has been controlled for a stationary droplet in a liquid at rest. Here we perform a
similar test but for uids in motion. Moreover, only the numerical runs performed with mesh adaptation loop are presented. To
control the mass conservation, the relative di erence between the droplet volume at each time and the initial droplet volume
is plotted inFIGURE 11 as a function of time divided by the maximum of the time duration of the numerical run for the ve
viscosity ratios. The volume of the droplet is determined by the relatia’b_3. The worst case is observed for the viscosity
ratio equal to, = 10™ for which the di erence of the droplet volume reaches 2.5% at the end of the computation. Nevertheless,
this di erence stays limited while the number of time steps is ardl®fdor all computations. Moreover, to be more in agreement
with the uid dynamics at low Reynolds humber, the computation domain has been increased in such a way that the criterion
given in subsection is not ful lled. Due to the mesh adaptation, the mass transfer stays limited. Conversely to the results
of subsection 3.3, the drop volume increases with time mainly due to the interpolation between meshes required during the
mesh adaptation. Despite the change of drop volume which stays limited, the retraction rate is in agreement with the theoretica
prediction whatever the viscosity ratio.

5.2 | Capillary rising

When a liquid is introduced in a capillary tube with a diamé&ethe liquid rises up due to the wetting of the liquid on the tube
wall. At the equilibrium, the rising height depends on the static contact aggllee surface tension, the liquid density 4, the
gravity and the tube diameter. According to de Gennes € #he height over which the liquid rises up can be written as follows

Neap  4cos ¢
D Bo
in which the Bond number is de ned with as a length scale. Whe < _2 corresponding to wetting conditionh,, is
positif while if ¢ > _2 (non-wetting condition), h.,, is negatif meaning that the liquid goes down occurring for a liquid
metal like mercury, for instance.
The dynamics of rising can be studied with the Stokes/Cahn-Hilliard equations for which the wetting condition can be intro-
duced easily. We made a numerical simulation in an axisymmetric geometry depi€IJRE 12 corresponding to the one
half of the tube. The problem is normalized by a length scale equal to the tube diameter. The velocity scale is taken by writ-
ing the balance between gravity and viscous forces which gives ;gD?_ ;. In this case, the capillary and Bond numbers
become similar.

(73)
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FIGURE 11 [V.t/* V.0/]_V.0/ (%) vs.t obtained numerically with mesh adaptation for 10, 102, 10, 1 and10.

FIGURE 12 Geometry of a liquid rising in a tube with a radius equalt@®.

In the limit of vanishing Reynolds number, ve dimensionless numbers have to be considered. In the previous test, the sharp-
interface limit was very well captured when the Cahn number is an ordE8'ta Consequently, the Cahn number is set equal to
1072 . The Péclet number has to be taken su ciently large to reduce the di usion. The Péclet nifaiseset equal t&0. Ratios
, and, have been chosen equall6® and10? respectively which are the typical values for water ( uid 1) and air (uid 2).

The frontier of the domain depicted HGURE 12 is composed by a bottom frontier localized at one radius below the initial
position of the free surface. In this boundary, a pressure is imposed corresponding to the hydrostatic pressure determined wit
the initial position of the free surface. By this way, the bottom frontier is similar to a permeable boundary simulating the contact
with a reservoir. The vertical boundary which is at one diameter above the initial free surface is an open boundary in which the
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Boundary ' u
) bottom ;ﬁ=o ;)—n:o n=+ +Yn
) o top )_n:?“l_ )_n=0 n=0
' 1* "2 2cos
) o ))_n: 2Cn ))_n:o u=o0

TABLE 1 Boundary conditions for the numerical computation of the capillary rising of a liquid for the geometry given in
FIGURE

FIGURE 13 Contact line position as a function of time for a contact angle equal t® andBo = 1.

pressure is imposed equal to zero. From the nature of these two conditions, both the bottom and top horizontal boundaries ar
designated ap , in FIGURE 12. The vertical frontiej  localized atr = 1_2 corresponds to the wall in which the no-slip
boundary condition is imposed on the velocity eld. The whole conditions for bgth andu are summarized ifABLE

On) p, the wetting condition has been written according to the previous developments summarized in section 2. By this
way, at the free surface corresponding te 0, the wetting angle is imposed through a non-homogeneous Neumann condition
on the order parameter. Initially, uid 1 is located below the plare0 in such of way that is given by the exact solution of

the Cahn-Hilliard equation in one-dimension:
H I

0zt =*tanh  g=— - (74)
2Cn

Numerical simulations have been done with BDF-2 temporal scheme and a time step ddifal The typical mesh size is
roughly equal tal0™ . Starting with a plane interface, a static contact angle equal to4 _9 (80’) is imposed for a Bond
number equal to one. The position of the contact line is recorded at each tim&IS&RE presents the position of the
contactline as a function of time. The solid line is the numerical solution while the dashed-dotted line is the linear approximation.
After a short time over which the static contact angle is established, the contact line rises up quasi-linearly as a function of time.
When the free surface is close to the equilibrium position, the motion of the contact line becomes slower and slower. The dashec
line corresponds to the position of the contact line which must be observedfo¢ _9andBo = 1.

Physically speaking, when the contact angle is established on the wall, the liquid below the free surface undergoes a pressur
not balanced by the weight of the liquid. Consequently, the liquid rises up until the liquid counterweights the capillary force.
In FIGURE 14, the pressure eld is plotted at the beginning 1 and at the end of the numerical simulations 288. In
FIGURE 14-(a) recorded at the beginning of the numerical run, a low pressure is mainly observed close to the contact line. An
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@t=1 (b)t = 288

FIGURE 14 Pressure eld in the tube at (a) the beginning of the numericakrarl and (b) at the entl= 288 for a contact
angle equaltog=4 _9andBo = 1.

over-pressure appears at the bottom of the tubEIGURE 14-(b) taken at the end of the numerical simulation, a hydrostatic
pressure is ful lled characterized by a curved free surface.

The position of the free surface after the rising of the liquid can be obtained easily by solving the equilibrium of the pressure
due to the gravity and surface tension. If the slope of the free surface is assumed enough small, the free surface is obviousl
solution of the following equation

1d dz
rdr dr
The left-hand side is the curvature given by the Laplacian of the free surface. The right-hand side is the gravity force. This last

equation has been normalized for which only the Bond number is involved. The exact solution is given by

u_
z=Cl, Borl/; (76)

=Boz: (75)

for which, 1 is the modi ed Bessel function at the zeroth order. The consZaistdetermined by setting the contact angle equal
to ¢ atthe wall position (irr = 1_2).

FIGURE plots thez position at the function of for the free surface obtained numerically at the end of the numerical
run. The solution obtained according to the static equilibrium, Eq. (76), is also represented. The agreement between the twc
solutions is quite good meaning that the static condition is ful lled.

The Euclidean norm of the velocity eld is representedriGURE 16 at three di erent timesl, 25and100). Far away of the
free surface, velocity pro le is similar to a Poiseuille ow driven by the capillary rising. As it is clearly shoiGURE 16,
the amplitude of the velocity decreases with the time. When0:1, the maximum of the Euclidean norm is approximately
4:5 1072 while att = 25 maxfiufi/ is equal tol:71 1072 to reach2:87 10° att = 100. Close to the contact line, a strong
velocity gradient is observed for which the maximum of the velocity is reached close to the contact line. Nevertheless, due to
the di use interface, the velocity remains continue.

The behavior of the axial velocity close to the contact line is showFIGURE 17 where the-component of the velocity
v is plotted as a function of radial coordinate. As already pointed out, the velocity strongly increases close to the contact line
mainly due to the pressure gradient driven by the capillary force. The scale over which the velocity changes is due to the di usion
length of the chemical potential coupling with theyviscous dissipation. According to Jatganid Yue et af', it is expected
that the length scalg,of di usion is proportionalto  Pe In contrary, Briant and Yeomafisproposed another scaling of the
di usion lengthin1_* Pe

To control the prediction of our numerical solver, we made two supplementary runBevitil® and10°. Velocity pro les
have been extracted over the radial axis localized at the contact line at a particular time &fpaFtGURE 18 depicts the
behavior ofv_maxuv/ as a function of de ned as follows

u_—
_.1*2r/*Pe

> , (77)
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FIGURE 15 Geometry of the free surface,vs. r, for a contact angle equal # 9 andBo = 1. Solid line is the static
equilibrium given by Eq. (76) and dashed-dotted line is the numerical solution.

@t=1 (b)t=25 (c)t =107

FIGURE 16 Magnitude of the velocity eldiufiin the tube at (a) = 1, (b)t = 25 and (c)t = 10 for a contact angle equal to
4 9andBo = 1. At each time, the velocity range is rescaled and is given in each gure on the left side.

in the situation wher8o = 1, Cn = 10 . The coordinate is the inner coordinate according to van DykeClearly, the scaling
proposed by Briant and Yeomdfisagrees very well with our numerical results. In the referéhdie contact line dynamics is
driven by a shear ow between two parallel walls while here the driven force is due to the wetting of the liquid. Consequently,
our result is a con rmation of the scaling proposed by Briant and Yeoitans

5.3 | Drop spreading on a horizontal wall

The last case investigated in this section is devoted to a drop wetting on a horizontal solid substrate. In a such case, and when tt
gravity force is neglected, a drop at rest takes a static form equivalent to a spherical cap with a static contact angle depending o
the wetting property’ as already indicated at the beginning of the previous subsection. If now a droplet is set on the substrate
with an initial contact angle, di erent to the static angle, the droplet spreads or retracts depending on the di erepte ..

More accurately, if ;* ¢ > 0, the drop spreads. Conversely, the drop retractg ff ¢ < 0. A numerical simulation has

been achieved for the rst situation. We arti cially put a semi-spherical drop with a dimensionless radius efjual ko the

limit where inertia and gravity are neglected, the only two forces involve in this problem are the viscous and the surface tension
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FIGURE 17 z-axis velocity componentvs.r, over a horizontal line localized right on the contact line for a contact angle equal
to4 9andBo =1 andfort =1, 25and100.

FIGURE 18 v_maxuy/ as a function ot at the contact line for = 2:5 for Bo = 1 andPe = 5Q 10? and1C®.

forces. It is natural in a such limit to take as a characteristic velocity the viscous-capillary velocity given,byrhis means
that the only dimensionless numbers are the Cahn and the Péclet numbers and the static contactfenpteviously, the
problem is written in a 2d-axisymmetric geometry in whicfez/ E [0; 1:5] « [0 ; 1].

The domain is depicted iIRIGURE with a drop of the uid 1 represented at the initial time meaning that the initial
contact angle is _2. The boundary conditions are also provide#FIGURE 19. On the top and the right boundaries, stress free
condition is imposed and homogeneous Neumann condition is applied botland . On the bottom, the no-slip boundary
condition is used. The wetting condition is set as previously applied in the case a the capillary rising. The no- ux condition is
applied for the chemical potential. The Cahn and the Péclet numbers are taken etfidland 10? respectively. The static
contact angle is equal to_6. The viscosity ratio has been set equal te 10”2 . The mesh has been made with the nest mesh
size close to the wall equal tb 150and the largest mesh size far away from the wall is set equil %0 This run has been
done without mesh adaptation. The total of triangle elements is then equal to 8617. The time $tepli®™ and a BDF-2
scheme is used.
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FIGURE 19 Geometry of a spreading drop of uid 1 in the initial con guration. The boundary condition on the top, bottom
and right boundaries are also given for the three unknowns,andu.

First, the drop shape is represented in solid linEIBURE 20 at six di erent times starting from the initial conditioh%£ 0)
to a time for which the static form is practically observed,BE@URE 20-(f). To control the shape of the drop, we approximate
the shape by two di erent curves. The rst method is to consider that the drop shape is a spherical cap witha rzditesed
on thez-axis inz, with a contact angle. These three parameters are found by assuming that the drop volume is conserved, and
the dimensions of the drop imaxis andz-axis are just de ned by the geometry which can be written as follows

a’l*cos /2.2+cos /= %r; (78)
rg_o = asin ; (79)
Zmax = @t Zg: (80)

In the two last equationsd_, is the location of the triple line on the wall, i.2= 0 andz,,, is the location of the drop interface
on thez-axis. These two locations can be obtained by the numerical form. The solution of the previous system of equations
gives us the three parametesisz, and . This rst approximation will be designated as global approximation. The spherical
cap obtained by this method is plotteditGURE 20 for the di erent times in dash-dot line.

Another representation of the drop shape has been used. Once again, we consider that the shape can be given by the spheri
cap given in a case of acute angle by the following equation

u
z=2z5+ a**rZ (81)

The values oty anda are determined using a non-linear regression minimizing the error between the numerical and the spherical
cap solution. This second approximation designated as non-linear regression is ploBsURE 20 in dashed line.

Since for initial condition which is given by a semi-spherical sh&&URE 20-(a) and when the drop is close to the static
form, FIGURE 20-(f), the two methods give approximately the same curve. A disagreement is more important during the
spreading process. In fact, since the static angle is applied as boundary condition, the curvature changes close to the wall whic
is the main driven force leading to the drop spreading. This change of curvature is particular very well visSiIGIERE 20-(b)
andFIGURE 20-(c).

The di erent between the spherical cap and the real form can be interpreted in term of apparent contact angle *Ho man
showed experimentally by pushing a liquid in a capillary tube that the apparent contact angle can be di erent to the static angle.
He pointed out also that the di erence depends on the velocity or more accurately on the capillary number. In order to describe
more rigorously the wetting dynamics, Céxdevelop a theory based an asymptotic development around the contact line. Far
away from the contact line, the Stokes equations are used given the uid dynamics solution. Close to the contact line, Cox
introduced a slip length to remove the singularity of the solution at the contact line. Finally, by matching the outer and the inter
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FIGURE 20 Drop shape during the spreading at di erent times equal ta @, (b)t = 0:1, (c)t =05, (d)t=2,(e)t=5
and (f)t = 20.

solutions, the apparent or dynamic contact angles given by the following equation

g 4./*9 &, /=*Ca”In; (82)
in which the functiorg. ; , / is given by
. d .
9-,,/—Ef.;'/, (83)
0
with
2sin ,2 2*sin? +2, . * [+sin® +. * [2*gin?
f.;, /= - - - - X (84)
,. 2*sin? /[ * +sin cos ]+ . * [2*sin? . *sin cos /

The capillary numbe€a" is the normalized velocity of the moving contact line. Finally, the dimensionless paranisttre
ratio to the slip length to the characteristic length which can be the drop diameter.

From our numerical solution, both the apparent (dynamic) contact angle and the capillary rCahloan be estimated.
The dynamic contact angle is determined by the two solutions used to t the drop shB[f&URE 20. Since the velocity is
normalized by the ratio_ 4, the dimensionless velocity close to the triple line can be used to estimated the capillary number
Ca". To see the behavior of the velocity eld around the triple line, the velocity eld is providdd@URE 21 for (a)t = 0:1,
(b)t =05, (c)t =1 and (d)t = 5. At early stage, the velocity amplitude is important. Whilg at 0:1 the maximum of the
velocity amplitude is around:5 107 the magnitude of velocity decreases2@3 102 whent = 5. In the following, we
estimate the capillary numb@&a" by taking the amplitude of thecomponent of the velocity over the time range.

The dynamic contact angle has been determined using the approximate shapes described previously and depicted |
FIGURE 22. For a large capillary number, the dynamic contact angle is larger than the static contact angle as expected by the
theory. When the capillary number goes to zero, the dynamic contact angle becomes more and more close to the static conta
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(@)t=0:1 (b)t=0:>5

©t=1 (@t=5

FIGURE 21 Velocity eld in the neighbourhood of the triple line for a drop wetting a solid walltfer 0:1, 0:5, 1 and5.

FIGURE 22 The dynamic contact angle as a functiorQa using the global approximation given in dashed line style and the
non-linear regression given in dash-dot line style. The Cox theory solution is represented in solid line st @t .

angle. The Cox's theory has been used to compare with our numerical solution. We adapt the valugafaingeter set equal

to 10" in order to have a good agreement. In rst glance this valuesgfems very important in comparison with values classi-

cally admitted { 10 ") according to Zahedi et &. Nevertheless, in our case, the slip length is not introduced in the numerical
model. This slip length comes from the di usion process of the chemical potential around the interface controlled by the value
of the Péclet number as pointed out in the previous subsection. We showed that the di usion characteristic length behaves a
1_* Pegiven an order of magnitude aD™ for a Péclet number equal id? which is the order of magnitude used to set
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From this last case, the dynamics of wetting is clearly well captured with the Stokes/Cahn-Hilliard model even with a Cahn
number equal td0? . The drop wetting on a solid substrate allows us to determine the dynamic contact angle with only one
numerical run. The numerical results give the same trend that the Cox's theory.

6 | CONCLUSION

This work has been devoted to a development of a numerical method to solve the coupled Stokes/Cahn-Hilliard equations in
the framework of discontinuous Galerkin nite element method. First, the numerical scheme of the Cahn-Hilliard equation has
been developed. The coupled equations on the order parameter and on the chemical potential are solved using a method close
the one used to solve biharmonic equations. For a problem with a known exact solution, the spatial rate of convergence has bee
checked to be of optimal-order. Second, a numerical scheme for coupled Stokes/Cahn-Hilliard equations has been developel
This solver takes into account the dramatic variation of the viscosity. For a corresponding problem with known kinematic-phase
eld solution we also checked that the spatial and time schemes are both of optimal-order.

Three cases of two-phase ows have been investigated. First the droplet retraction in a liquid at rest has been numerically
tested. Thanks to this test, we show that the Stokes/Cahn-Hilliard solver reproduces very well the drop retraction whatever the
viscosity ratio used between the two liquids. Indeed, the comparison of the droplet retraction obtained numerically and with an
approximate solution when droplets are slightly deformed is quite good. The droplet shape becomes more and more spherice
exponentially with time. The retraction rate is a function of the viscosity ratio very well found with the numerical solver. In
order to study the dynamics of the contact line physics, the problem of the capillary rising in a circular tube has been considered.
The dynamics is very well reproduced and the asymptotic behavior of the static pressure equilibrium is captured. The scaling
of the velocity close to the contact line has been studied. We pointed out that the di usion scale of the chemical potential scales
as a function of the fourth root of the Péclet number in agreement with the previous work of Briant and Y&ofimasly,
the wetting dynamics is studied by investigating the spreading of a drop on a solid substrate. With only one computation, the
dynamic contact angle can be determined as a function of the capillary number de ned from the velocity of the contact line. The
numerical results obtained in this work compare well with the theory established in the framework of the classical mechanics
in which the triple line is a sharp-interface.

These results show that the discontinuous Galerkin formulation is adequate to solve the coupled Stokes/Cahn-Hilliard
equations with a high level of accuracy. The interaction with walls is easily taken into account and provide predictions in agree-
ment with the physics. The control of the di usion of the chemical potential allows to mimic the slippage of the uids close to
the triple line. The characteristic length scale can be adapted by choosing the value of the Onsager mobility or the Péclet num
ber. Nevertheless, to avoid a di usion between uid phases, the Cahn number must be su ciently small and the domain must be
limited in space in comparison with uid inclusions investigated. Consequently, the Cahn-Hilliard theory is very well designed
to study the uid dynamics at a mesoscopic scale. In near future, this numerical solver will be used to study uid interaction
with heterogeneous walls and also generalize the formulation for non-Newtonian uids.

How to cite this article: F. Pigeonneau, E. Hachem, and P. Saramito (2019), Discontinuous Galerkin nite element method
applied to the coupled unsteady Stokes/Cahn-Hilliard equationd,Numer Meth Fluids2019;00:1 29.

APPENDIX
A DETERMINATION OF THE SOURCE TERMS OF THE SPACE RATE OF CONVERGENCE

A.1 Source term on the Cahn-Hilliard equation
The source term on the Cahn-Hilliard equation is obviously given by
)I

g.x;t/=)—t+(‘ u* Ple( : (A1)
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From the exact solution of, eq. (65) and those afandv, eqgs. (67) and (68), the two components of the gradieht afe
given by

) oy
T u; (A2)
)l
— =V A3
Ty (A3)
From these relations, the dot prod@¢t u is given by
(' u= sin[ .x+y/]sin[ .y* x/]sirtt: (A4)

The Laplacian of the chemical potential is easily determined from the exact solutiogieén by (66) which gives after the
determination of the Laplacian 6f the following relation

(2 =*2 22 2Crf*1/' +6' Zsin’t sirf. X /cos. y /+cos?. x /sin?. y /*cos?. x [cos. y/ : (A5)

The source terng.x;t/ is then easily determined by addition of the partial temporal derivative afid the two equations

(A4) and (A5).

A.2 Source term of the Stokes equations
The momentum equation taking into account the source term is written as follows

*(p+( [2. DU+ ———— (" +f =0 (A6)
2 2CacCn

As already pointed out in Y 4.3, the pressure gradient has not to be taken into account to determine the forced sburce term
So, the source term must take into account the viscous and the capillary forces. The equation salgimvafives that

u _ .

37 = - (A7)

Vo,

T (A8)
;_; =* % =* sin.x /sin.y/sint: (A9)

From these relations, the rate-of-strain tensor is a diagonal tensor. So, the two compoheats given by
fo=r2l M5 3 ) (A10)
, M, 2 2cacn X
fo=l oM. g 8 ) (AL1)
)y )Y 2 2cacn )Y

Using the de nition of the dynamic viscosity and the exact solution's ahdu, f , andf , take the following form

fo= 2[4, +21% ./ Jut ot (A12)
2 2CacCn

fo= 2+, +21% [ ve o (A13)
2 2CaCn

with' and given by (65) and (66).
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