M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, American Journal of Physics, vol.34, issue.2, 1965.
DOI : 10.1119/1.1972842

D. M. Anderson, G. B. Mcfadden, and A. A. Wheeler, Diffuse-interface methods in fluid mechanics
DOI : 10.6028/nist.ir.6018

URL : http://hdl.handle.net/2060/19980000187

L. K. Antanovskii, A phase field model of capillarity, Physics of Fluids, vol.35, issue.4, pp.747-753, 1995.
DOI : 10.1017/S0956792500000851

V. E. Badalassi, H. D. Ceniceros, and S. Banerjee, Computation of multiphase systems with phase field models, Journal of Computational Physics, vol.190, issue.2, pp.371-397, 2003.
DOI : 10.1016/S0021-9991(03)00280-8

A. J. Briant and J. M. Yeomans, Lattice Boltzmann simulations of contact line motion. II. Binary fluids, Physical Review E, vol.168, issue.3, p.31603, 2004.
DOI : 10.1017/S0022112086000332

J. W. Cahn, Critical point wetting, The Journal of Chemical Physics, vol.13, issue.8, pp.3667-3672, 1977.
DOI : 10.1063/1.1742831

J. W. Cahn and J. E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy, The Journal of Chemical Physics, vol.184, issue.2, p.258, 1958.
DOI : 10.1039/df9531500210

B. Cockburn, G. Kanschat, D. Schötzau, and C. Schwab, Local Discontinuous Galerkin Methods for the Stokes System, SIAM Journal on Numerical Analysis, vol.40, issue.1, pp.319-342, 2002.
DOI : 10.1137/S0036142900380121

R. G. Cox, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, Journal of Fluid Mechanics, vol.81, issue.-1, pp.169-194, 1986.
DOI : 10.1021/ie50320a024

P. De-gennes, F. Brochard-wyart, and D. Quéré, Gouttes, bulles, perles et ondes, 2005.

D. A. Di-pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods
DOI : 10.1007/978-3-642-22980-0

S. Dong and J. Shen, A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios, Journal of Computational Physics, vol.231, issue.17, pp.5788-5804, 2012.
DOI : 10.1016/j.jcp.2012.04.041

X. Feng and O. A. Karakashian, Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition, Mathematics of Computation, vol.76, issue.259, pp.1093-1117, 2007.
DOI : 10.1090/S0025-5718-07-01985-0

N. A. Frankel and A. Acrivos, The constitutive equation for a dilute emulsion, Journal of Fluid Mechanics, vol.146, issue.01, pp.65-78, 1970.
DOI : 10.1007/BF01982423

M. Giaquinta and S. Hildebrandt, Calculus of variations I, 1996.
DOI : 10.1007/978-3-662-03278-7

S. Gross and A. Reusken, Numerical methods for two-phase incompressible flows, volume 40 of Springer series in computational mathematics, 2011.

T. Gudi, N. Nataraj, and A. K. Pani, Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation, Journal of Scientific Computing, vol.196, issue.23, pp.139-161, 2008.
DOI : 10.2478/cmam-2003-0037

M. E. Gurtin, D. Polignone, and J. Vinals, TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER, Mathematical Models and Methods in Applied Sciences, vol.06, issue.06, pp.815-831, 1996.
DOI : 10.1142/S0218202596000341

C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, vol.39, issue.1
DOI : 10.1016/0021-9991(81)90145-5

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Reviews of Modern Physics, vol.30, issue.88, pp.435-479, 1977.
DOI : 10.1103/PhysRevLett.30.22

C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, Journal of Colloid and Interface Science, vol.35, issue.1, pp.85-101, 1971.
DOI : 10.1016/0021-9797(71)90188-3

D. Jacqmin, Calculation of Two-Phase Navier???Stokes Flows Using Phase-Field Modeling, Journal of Computational Physics, vol.155, issue.1, pp.96-127, 1999.
DOI : 10.1006/jcph.1999.6332

D. Jacqmin, Contact-line dynamics of a diffuse fluid interface, Journal of Fluid Mechanics, vol.402, pp.57-88, 2000.
DOI : 10.1017/S0022112099006874

D. Kay, V. Styles, and E. Süli, Discontinuous Galerkin Finite Element Approximation of the Cahn???Hilliard Equation with Convection, SIAM Journal on Numerical Analysis, vol.47, issue.4, pp.2660-2685, 2009.
DOI : 10.1137/080726768

D. Legendre and M. Maglio, Comparison between numerical models for the simulation of moving contact lines, Computers & Fluids, vol.113, pp.2-13, 2015.
DOI : 10.1016/j.compfluid.2014.09.018

URL : https://hal.archives-ouvertes.fr/hal-01340390

P. L. Maffetone and M. Minale, Equation of change for ellipsoidal drops in viscous flow, Journal of Non-Newtonian Fluid Mechanics, vol.78, issue.2-3, pp.227-241, 1998.
DOI : 10.1016/S0377-0257(98)00065-2

J. G. Oldroyd, On the Formulation of Rheological Equations of State, Proc. R. Soc. Lond. A, pp.523-541, 1063.
DOI : 10.1098/rspa.1950.0035

F. Pigeonneau and A. Sellier, Low-Reynolds-number gravity-driven migration and deformation of bubbles near a free surface, Physics of Fluids, vol.1, issue.9, p.92102, 2011.
DOI : 10.1016/0009-2509(67)80208-2

URL : https://hal.archives-ouvertes.fr/hal-00620928

C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow, 1992.
DOI : 10.1017/CBO9780511624124

T. Qian, X. Wang, and P. Sheng, A variational approach to moving contact line hydrodynamics, Journal of Fluid Mechanics, vol.564
DOI : 10.1017/S0022112006001935

P. Saramito, Efficient C++ finite element computing with Rheolef, Discontinuous Galerkin methods. CNRS-CCSD ed, 2015.
URL : https://hal.archives-ouvertes.fr/cel-00573970

P. Seppecher, Moving contact lines in the Cahn-Hilliard theory, International Journal of Engineering Science, vol.34, issue.9, pp.977-992, 1996.
DOI : 10.1016/0020-7225(95)00141-7

URL : https://hal.archives-ouvertes.fr/hal-00527283

J. A. Sethian, Level set methods and fast marching methods. Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 1999.

K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method, Journal of Computational Physics, vol.205, issue.2, pp.401-407, 2005.
DOI : 10.1016/j.jcp.2004.11.017

Y. Sui and P. D. Spelt, An efficient computational model for macroscale simulations of moving contact lines, Journal of Computational Physics, vol.242, pp.37-52, 2013.
DOI : 10.1016/j.jcp.2013.02.005

URL : https://hal.archives-ouvertes.fr/hal-00788635

E. Süli and D. F. Mayers, An Introduction to Numerical Analysis, 2003.
DOI : 10.1017/CBO9780511801181

M. Ta, F. Pigeonneau, and P. Saramito, An implicit high order discontinuous galerkin level set method for two-phase flow problems, ICMF-2016 -9th International Conference on Multiphase Flow, pp.1-6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01323548

A. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of Computational Physics, vol.100, issue.1, pp.25-37, 1992.
DOI : 10.1016/0021-9991(92)90307-K

J. D. Van-der-waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, Journal of Statistical Physics, vol.20, issue.2, pp.1-56, 1893.
DOI : 10.1007/BF01011514

M. Van-dyke, Perturbation Method in Fluid Mechanics, Journal of Applied Mechanics, vol.43, issue.1, 1975.
DOI : 10.1115/1.3423785

P. Yue and J. J. Feng, Wall energy relaxation in the Cahn???Hilliard model for moving contact lines, Physics of Fluids, vol.1, issue.1, p.12106, 2011.
DOI : 10.1017/S0022112091000721

P. Yue, C. Zhou, and J. J. Feng, Sharp-interface limit of the Cahn???Hilliard model for moving contact lines, Journal of Fluid Mechanics, vol.1, pp.279-294, 2010.
DOI : 10.1146/annurev.fl.11.010179.002103