C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow, 1992.
DOI : 10.1017/cbo9780511624124

F. Pigeonneau and A. Sellier, Low-Reynolds-Number gravity-driven migration and deformation of bubbles near a free surface, Phys. Fluids, vol.23, p.92102, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00620928

A. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys, vol.100, pp.25-37, 1992.
DOI : 10.1016/0021-9991(92)90294-9

C. W. Hirt, A. A. Amsden, and J. L. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys, vol.14, issue.3, pp.227-253, 1974.
DOI : 10.1016/0021-9991(74)90051-5

V. Girault, H. López, and B. Maury, One time-step finite element discretization of the equation of motion of two-fluid flows, Numer. Methods Partial Differ. Equations, vol.22, issue.3, pp.680-707, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00112256

P. Yue, J. J. Feng, C. A. Bertelo, and H. H. Hu, An arbitrary Lagrangian-Eulerian method for simulating bubble growth in polymer foaming, J. Comput. Phys, vol.226, pp.2229-2249, 2007.

S. Ganesan and L. Tobiska, A coupled arbitrary Lagrangian-Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants, J. Comput. Phys, vol.228, issue.8, pp.2859-2873, 2009.

C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys, vol.39, pp.201-226, 1981.

J. A. Sethian, Level set methods and fast marching methods. Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 1999.

J. A. Sethian and P. Smereka, Level set methods for fluid interfaces, Annu. Rev. Fluid Mech, vol.35, pp.341-371, 2003.

D. Legendre and M. Maglio, Comparison between numerical models for the simulation of moving contact lines, Comput. Fluids, vol.113, pp.2-13, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01340390

Y. Sui and P. D. Spelt, An efficient computational model for macroscale simulations of moving contact lines, J. Comput. Phys, vol.242, pp.37-52, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00788635

S. Gross and A. Reusken, Numerical methods for two-phase incompressible flows Springer series in computational mathematics, vol.40, 2011.

D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, A Hybrid Particle Level Set Method for Improved Interface Capturing, J. Comput. Phys, vol.183, issue.1, pp.83-116, 2002.

T. T. Bui, P. Frey, and B. Maury, A coupling strategy based on anisotropic mesh adaptation for solving two-fluid flows, Int. J. Numer. Methods Fluids, vol.66, issue.10, pp.1226-1247, 2011.

D. R. Noble, E. P. Newren, and J. B. Lechman, A conformal decomposition finite element method for modeling stationary fluid interface problems, Int. J. Numer. Methods Fluids, vol.63, issue.6, pp.725-742, 2010.
DOI : 10.1002/fld.2095

T. Fries, Higher-order conformal decomposition FEM (CDFEM), Comput. Methods Appl. Mech. Eng, vol.328, pp.75-98, 2018.
DOI : 10.1016/j.cma.2017.08.046

C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci, vol.35, issue.1, pp.85-101, 1971.

R. G. Cox, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, J. Fluid Mech, vol.168, pp.169-194, 1986.

J. W. Cahn and J. E. Hilliard,

, Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem. Phys, vol.28, issue.2, pp.258-267, 1958.

D. M. Anderson, G. B. Mcfadden, and A. A. Wheeler, Diffuse-interface methods in fluid Mechanics, Annu. Rev. Fluid Mech, vol.30, pp.139-165, 1998.

L. K. Antanovskii, A Phase Field Model of Capillarity, Phys. Fluids, vol.7, issue.4, pp.747-753, 1995.

P. Yue, J. J. Feng, C. Liu, and J. Shen, Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids, J. Non-Newtonian Fluid Mech, vol.129, issue.3, pp.163-176, 2005.

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond. A, vol.454, pp.2617-2654, 1998.

R. Mauri, Multiphase microfluidics: the diffuse interface model CISM Courses and Lectures, vol.538, 2012.

P. Seppecher, Moving contact lines in the Cahn-Hilliard theory, Int. J. Engng Sci, vol.34, issue.9, pp.977-992, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00527283

D. Jacqmin, Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech, vol.402, pp.57-88, 2000.

T. Qian, X. Wang, and P. Sheng, A variational approach to moving contact line hydrodynamics, J. Fluid Mech, vol.564, p.333, 2006.

W. Villanueva and G. Amberg, Some generic capillary-driven flows, Int. J. Multiphase Flow, vol.32, pp.1072-1086, 2006.

T. Biben and L. Joly, Wetting on nanorough surfaces, Phys. Rev. Lett, vol.100, issue.18, p.186103, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00438499

P. Yue, C. Zhou, and J. J. Feng, Sharp-interface limit of the Cahn-Hilliard model for moving contact lines, J. Fluid Mech, vol.645, pp.279-294, 2010.

P. Yue and J. J. Feng, Wall energy relaxation in the Cahn-Hilliard model for moving contact lines, Phys. Fluids, vol.23, issue.1, p.12106, 2011.

D. Jacqmin, Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling, J. Comput. Phys, vol.155, issue.1, pp.96-127, 1999.

V. E. Badalassi, H. D. Ceniceros, and S. Banerjee, Computation of multiphase systems with phase field models, J. Comput. Phys, vol.190, pp.371-397, 2003.

M. Ta, F. Pigeonneau, and P. Saramito, An implicit high order discontinuous Galerkin level set method for two-phase flow problems, 9th International Conference on Multiphase Flow, pp.1-6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01323548

D. Pietro, D. A. Ern, and A. , Mathematical aspects of discontinuous Galerkin methods, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01820185

S. Badia, R. Codina, T. Gudi, and J. Guzmán, Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity, IMA J. Numer. Anal, vol.34, issue.2, pp.800-819, 2014.

X. Feng and O. A. Karakashian, Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition, Math. Comp, vol.76, pp.1093-1117, 2007.

G. A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comput, vol.31, issue.137, pp.45-59, 1977.

D. Kay, V. Styles, and E. Süli,

, Discontinuous Galerkin finite element approximation of the Cahn-Hilliard equation with convection, SIAM J. Numer. Anal, vol.47, issue.4, pp.2660-2685, 2009.

T. Gudi, N. Nataraj, and A. K. Pani,

, Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation, J. Sci. Comput, vol.37, pp.139-161, 2008.

G. N. Wells, E. Kuhl, and K. Garikipati, A discontinuous Galerkin method for the Cahn-Hilliard equation, J. Comput. Phys, vol.218, issue.2, pp.860-877, 2006.

C. Liu and B. Rivière, Numerical analysis of a discontinuous Galerkin method for Cahn-Hilliard-Navier-Stokes equations, 2018.

J. W. Cahn, Critical point wetting, J. Chem. Phys, vol.66, issue.8, pp.3667-3672, 1977.

J. D. Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, Verhandel. Konink. Akad. Weten, vol.1, pp.1-56, 1893.

D. Gennes, P. Brochard-wyart, F. Quéré, and D. , Gouttes, bulles, perles et ondes, 2005.

M. Giaquinta and S. Hildebrandt, Calculus of variations I, 1996.

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys, vol.49, issue.3, pp.435-479, 1977.

M. E. Gurtin, D. Polignone, and J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Meth. Appl. Sci, vol.6, issue.6, pp.815-831, 1996.

S. Matsumoto, S. Maruyama, and H. Saruwatari, A molecular dynamics simulation of a liquid droplet on a solid surface, Proc. ASME-JSME Thermal Engng Joint Conf, pp.557-562, 1995.

D. Arnold, An Interior Penalty Finite Element Method with Discontinuous Elements, SIAM J. Numer. Anal, vol.19, issue.4, pp.742-760, 1982.

P. Castillo, Performance of discontinuous Galerkin methods for elliptic PDEs, SIAM J. Sci. Comput, vol.24, issue.2, pp.524-547, 2002.

K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method, J. Comput. Phys, vol.205, issue.2, pp.401-407, 2005.

E. Süli and D. F. Mayers, An Introduction to Numerical Analysis, 2003.

S. Pierre, Efficient C++ finite element computing with Rheolef. CNRS-CCSD ed, 2018.

P. Yue, C. Zhou, and J. J. Feng, Spontaneous shrinkage of drops and mass conservation in phase-field simulations, J. Comput. Phys, vol.223, issue.1, pp.1-9, 2007.

B. Cockburn, G. Kanschat, D. Schötzau, and C. Schwab, Local discontinuous Galerkin methods for the Stokes system, SIAM J. Numer. Anal, vol.40, issue.1, pp.319-342, 2002.

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, 1965.

S. Dong and J. Shen, A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios, J. Comput. Phys, vol.231, issue.17, pp.5788-5804, 2012.

M. J. Castro-díaz, F. Hecht, B. Mohammadi, and O. Pironneau, Anisotropic unstructured mesh adaption for flow simulations, Int. J. Num. Meth. Fluids, vol.25, issue.4, pp.475-491, 1997.

F. Hecht, BAMG: bidimensional anisotropic mesh generator. User Guide: INRIAParis, 2006.

J. G. Oldroyd, On the formulation of rheological equations of state, Proc. R. Soc. Lond. A, vol.200, pp.523-541, 1063.

N. A. Frankel and A. Acrivos, The constitutive equation for a dilute emulsion, J. Fluid Mech, vol.44, issue.01, pp.65-78, 1970.

P. L. Maffetone and M. Minale, Equation of change for ellipsoidal drops in viscous flow, J. Non-Newtonian Fluid Mech, vol.78, pp.227-241, 1998.

A. J. Briant and J. M. Yeomans,

, Lattice Boltzmann simulations of contact line motion. II. Binary fluids, Phys. Rev. E, vol.69, p.31603, 2004.

M. Van-dyke, Perturbations methods in fluid mechanics, 1975.

D. Gennes and P. G. , Wetting: Statics and dynamics, Rev. Mod. Phys, vol.57, issue.3, pp.827-863, 1985.

R. L. Hoffman, A study of the advancing interface. I. Interface shape in liquid-gas systems, J. Colloid Interface Sci, vol.50, issue.2, pp.228-241, 1975.

S. Zahedi, K. Gustavsson, and G. Kreiss, A conservative level set method for contact line dynamics, J. Comput. Phys, vol.228, issue.17, pp.6361-6375, 2009.