M. S. Wilson and S. Gottesfeld, High Performance Catalyzed Membranes of Ultra-low Pt Loadings for Polymer Electrolyte Fuel Cells, Journal of The Electrochemical Society, vol.139, issue.2, p.28, 1992.
DOI : 10.1149/1.2069277

S. Mukerjee, S. Srinivasan, and A. J. Appleby, Effect of sputtered film of platinum on low platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells, Electrochimica Acta, vol.38, issue.12, p.1661, 1993.
DOI : 10.1016/0013-4686(93)85056-5

S. Hirano, J. Kim, and S. Srinivasan, High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes, Electrochimica Acta, vol.42, issue.10, p.1587, 1997.
DOI : 10.1016/S0013-4686(96)00320-9

P. Costamagna and S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000, Journal of Power Sources, vol.102, issue.1-2, p.253, 2001.
DOI : 10.1016/S0378-7753(01)00808-4

P. Costamagna and S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000, Journal of Power Sources, vol.102, issue.1-2, p.242, 2001.
DOI : 10.1016/S0378-7753(01)00807-2

H. A. Gasteiger, W. Vielstich, and H. Yokokawa, Handbook of Fuel Cells, 2009.

L. M. Roen, C. H. Paik, and T. D. Jarvi, Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes, Electrochemical and Solid-State Letters, vol.97, issue.1, p.19, 2004.
DOI : 10.1021/j100148a030

E. Guilminot, A. Corcella, F. Charlot, F. Maillard, and M. Chatenet, Detection of Pt[sup z+] Ions and Pt Nanoparticles Inside the Membrane of a Used PEMFC, Journal of The Electrochemical Society, vol.589, issue.1, p.96, 2007.
DOI : 10.1021/jp981030f

N. Takeuchi and T. F. Fuller, Modeling and Investigation of Design Factors and Their Impact on Carbon Corrosion of PEMFC Electrodes, Journal of The Electrochemical Society, vol.52, issue.7, p.770, 2008.
DOI : 10.1149/1.2781015

L. Castanheira, L. Dubau, M. Mermoux, G. Berthomé, N. Caqué et al., Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: From Model Experiments to Real-Life Operation in Membrane Electrode Assemblies, ACS Catalysis, vol.4, issue.7, p.2258, 2014.
DOI : 10.1021/cs500449q

URL : https://hal.archives-ouvertes.fr/hal-01071857

L. Dubau, L. Castanheira, M. Chatenet, F. Maillard, J. Dillet et al., Carbon corrosion induced by membrane failure: The weak link of PEMFC long-term performance, International Journal of Hydrogen Energy, vol.39, issue.36, p.21902, 2014.
DOI : 10.1016/j.ijhydene.2014.07.099

URL : https://hal.archives-ouvertes.fr/hal-01418286

L. Dubau, L. Castanheira, F. Maillard, M. Chatenet, O. Lottin et al., A review of PEM fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies, Wiley Interdisciplinary Reviews: Energy and Environment, vol.1, issue.143, p.540, 2014.
DOI : 10.1149/1.2214561

URL : https://hal.archives-ouvertes.fr/hal-01418285

J. Willsau and J. Heitbaum, The influence of Pt-activation on the corrosion of carbon in gas diffusion electrodes???A dems study, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.161, issue.1, p.93, 1984.
DOI : 10.1016/S0022-0728(84)80252-1

E. Passalacqua, P. L. Antonucci, M. Vivaldi, A. Patti, V. Antonucci et al., The influence of Pt on the electrooxidation behaviour of carbon in phosphoric acid, Electrochimica Acta, vol.37, issue.15, p.2725, 1992.
DOI : 10.1016/0013-4686(92)85199-U

F. Maillard, A. Bonnefont, and F. Micoud, An EC-FTIR study on the catalytic role of Pt in carbon corrosion, Electrochemistry Communications, vol.13, issue.10, p.1109, 2011.
DOI : 10.1016/j.elecom.2011.07.011

N. Linse, L. Gubler, G. G. Scherer, and A. Wokaun, The effect of platinum on carbon corrosion behavior in polymer electrolyte fuel cells, Electrochimica Acta, vol.56, issue.22, p.7541, 2011.
DOI : 10.1016/j.electacta.2011.06.093

J. Speder, A. Zana, I. Spanos, J. J. Kirkensgaard, K. Mortensen et al., On the influence of the Pt to carbon ratio on the degradation of high surface area carbon supported PEM fuel cell electrocatalysts, Electrochemistry Communications, vol.34, p.153, 2013.
DOI : 10.1016/j.elecom.2013.06.001

W. R. Baumgartner, P. Parz, S. D. Fraser, E. Wallnofer, and V. Hacker, Polarization study of a PEMFC with four reference electrodes at hydrogen starvation conditions, Journal of Power Sources, vol.182, issue.2, p.413, 2008.
DOI : 10.1016/j.jpowsour.2008.01.001

G. Maranzana, C. Moyne, J. Dillet, S. Didierjean, and O. Lottin, About internal currents during start-up in proton exchange membrane fuel cell, Journal of Power Sources, vol.195, issue.18, p.5990, 2010.
DOI : 10.1016/j.jpowsour.2009.10.093

A. Oyarce, E. Zakrisson, M. Ivity, C. Lagergren, A. B. Ofstad et al., Comparing shut-down strategies for proton exchange membrane fuel cells, Journal of Power Sources, vol.254, p.232, 2014.
DOI : 10.1016/j.jpowsour.2013.12.058

S. Abbou, J. Dillet, G. Maranzana, S. Didierjean, and O. Lottin, Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode ??? Part II: Aging mitigation strategies based on water management and nitrogen crossover, Journal of Power Sources, vol.340, p.419, 2017.
DOI : 10.1016/j.jpowsour.2016.10.045

URL : https://hal.archives-ouvertes.fr/hal-01687920

S. Abbou, J. Dillet, G. Maranzana, S. Didierjean, and O. Lottin, Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode ??? Part I: Impact of water diffusion and nitrogen crossover, Journal of Power Sources, vol.340, p.337, 2017.
DOI : 10.1016/j.jpowsour.2016.11.079

URL : https://hal.archives-ouvertes.fr/hal-01687918

J. Xie, D. L. Wood, K. L. More, P. Atanassov, and R. L. Borup, Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions, Journal of The Electrochemical Society, vol.92, issue.5, p.1011, 2005.
DOI : 10.1002/(SICI)1521-4095(199805)10:7<515::AID-ADMA515>3.3.CO;2-P

R. L. Borup, J. R. Davey, F. H. Garzon, D. L. Wood, and M. A. Inbody, PEM fuel cell electrocatalyst durability measurements, Journal of Power Sources, vol.163, issue.1, p.76, 2006.
DOI : 10.1016/j.jpowsour.2006.03.009

R. Borup, Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation, Chemical Reviews, vol.107, issue.10, p.3904, 2007.
DOI : 10.1021/cr050182l

L. Dubau, L. Castanheira, G. Berthomé, and F. Maillard, An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere, Electrochimica Acta, vol.110, p.273, 2013.
DOI : 10.1016/j.electacta.2013.03.184

URL : https://hal.archives-ouvertes.fr/hal-00961029

J. Dillet, D. Spernjak, A. Lamibrac, G. Maranzana, R. Mukundan et al., Impact of flow rates and electrode specifications on degradations during repeated startups and shutdowns in polymer-electrolyte membrane fuel cells, Journal of Power Sources, vol.250, p.68, 2014.
DOI : 10.1016/j.jpowsour.2013.10.141

URL : https://hal.archives-ouvertes.fr/hal-01418291

E. Guilminot, A. Corcella, M. Châtenet, F. Maillard, F. Charlot et al., Membrane and Active Layer Degradation upon PEMFC Steady-State Operation, Journal of The Electrochemical Society, vol.14, issue.11, p.1106, 2007.
DOI : 10.1149/1.2266163

URL : https://hal.archives-ouvertes.fr/hal-00386380

K. Kinoshita and J. Bett, Electrochemical oxidation of carbon black in concentrated phosphoric acid at 135??C, Carbon, vol.11, issue.3, p.237, 1973.
DOI : 10.1016/0008-6223(73)90026-2

K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, 1988.

E. Yli-rantala, A. Pasanen, P. Kauranen, V. Ruiz, M. Borghei et al., Graphitised Carbon Nanofibres as Catalyst Support for PEMFC, Fuel Cells, vol.192, issue.353, p.715, 2011.
DOI : 10.1016/j.jpowsour.2009.01.005

S. J. Ashton and M. Arenz, Comparative DEMS study on the electrochemical oxidation of carbon blacks, Journal of Power Sources, vol.217, p.392, 2012.
DOI : 10.1016/j.jpowsour.2012.06.015

L. Castanheira, W. O. Silva, F. H. Lima, A. Crisci, L. Dubau et al., Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Effect of the Carbon Structure, the Degradation Protocol, and the Gas Atmosphere, ACS Catalysis, vol.5, issue.4, p.2184, 2015.
DOI : 10.1021/cs501973j

T. Kim, T. Xie, W. Jung, F. Gadala-maria, P. Ganesan et al., Development of catalytically active and highly stable catalyst supports for polymer electrolyte membrane fuel cells, Journal of Power Sources, vol.273, p.761, 2015.
DOI : 10.1016/j.jpowsour.2014.09.142

T. Xie, W. Jung, T. Kim, P. Ganesan, and B. N. Popov, Development of Highly Active and Durable Hybrid Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells, Journal of the Electrochemical Society, vol.161, issue.14, p.1489, 2014.
DOI : 10.1149/2.0961414jes

W. Jung, T. Xie, T. Kim, P. Ganesan, and B. N. Popov, Highly Active and Durable Co-Doped Pt/CCC Cathode Catalyst for Polymer Electrolyte Membrane Fuel Cells, Electrochimica Acta, vol.167, p.1, 2015.
DOI : 10.1016/j.electacta.2015.03.120

M. Watanabe and S. Motoo, Electrocatalysis by ad-atoms, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.60, issue.3, p.267, 1975.
DOI : 10.1016/S0022-0728(75)80261-0

L. Castanheira, L. Dubau, and F. Maillard, Accelerated Stress Tests of Pt/HSAC Electrocatalysts: an Identical-Location Transmission Electron Microscopy Study on the Influence of Intermediate Characterizations, Electrocatalysis, vol.662, issue.143, p.125, 2014.
DOI : 10.1016/j.jelechem.2011.09.003

A. Ohma, K. Shinohara, A. Iiyama, T. Yoshida, and A. Daimaru, Membrane and Catalyst Performance Targets for Automotive Fuel Cells by FCCJ Membrane, 220th ECS Meeting, p.775, 2011.

T. U. Energy, Fuel Cell Technologies Office Multi-Year Research, Development , and Demonstration Plan, 2012.

D. H. Lim, W. J. Lee, N. L. Macy, and W. H. Smyrl, Electrochemical Durability Investigation of Pt/TiO[sub 2] Nanotube Catalysts for Polymer Electrolyte Membrane Fuel Cells, Electrochemical and Solid-State Letters, vol.12, issue.9, p.123, 2009.
DOI : 10.1016/j.jcat.2008.06.007

A. Masao, S. Noda, F. Takasaki, K. Ito, and K. Sasaki, Carbon-Free Pt Electrocatalysts Supported on SnO[sub 2] for Polymer Electrolyte Fuel Cells, Electrochemical and Solid-State Letters, vol.835, issue.9, p.119, 2009.
DOI : 10.1063/1.371541

M. Wesselmark, B. Wickman, C. Lagergren, and G. Lindbergh, Electrochemical performance and stability of thin film electrodes with metal oxides in polymer electrolyte fuel cells, Electrochimica Acta, vol.55, issue.26, p.7590, 2010.
DOI : 10.1016/j.electacta.2009.12.040

F. Takasaki, S. Matsuie, Y. Takabatake, Z. Noda, A. Hayashi et al., Carbon-Free Pt Electrocatalysts Supported on SnO2 for Polymer Electrolyte Fuel Cells: Electrocatalytic Activity and Durability, Journal of The Electrochemical Society, vol.158, issue.10, p.1270, 2011.
DOI : 10.1016/j.jpowsour.2008.06.006

Y. Ishigami, K. Takada, H. Yano, J. Inukai, M. Uchida et al., Corrosion of carbon supports at cathode during hydrogen/air replacement at anode studied by visualization of oxygen partial pressures in a PEFC???Start-up/shut-down simulation, Journal of Power Sources, vol.196, issue.6, p.3003, 2011.
DOI : 10.1016/j.jpowsour.2010.11.092

I. Cerri, T. Nagami, J. Davies, C. Mormiche, A. Vecoven et al., Innovative catalyst supports to address fuel cell stack durability, International Journal of Hydrogen Energy, vol.38, issue.1, p.640, 2013.
DOI : 10.1016/j.ijhydene.2012.06.089

Y. Takabatake, Z. Noda, S. M. Lyth, A. Hayashi, and K. Sasaki, Cycle durability of metal oxide supports for PEFC electrocatalysts, International Journal of Hydrogen Energy, vol.39, issue.10, p.5074, 2014.
DOI : 10.1016/j.ijhydene.2014.01.094

E. Fabbri, A. P?atrup?atru, A. Rabis, R. Kötz, and T. J. Schmidt, Advanced Cathode Materials for Polymer Electrolyte Fuel Cells Based on Pt/ Metal Oxides: From Model Electrodes to Catalyst Systems, CHIMIA International Journal for Chemistry, vol.68, issue.4, p.217, 2014.
DOI : 10.2533/chimia.2014.217

E. Fabbri, A. Rabis, R. Kötz, and T. J. Schmidt, porous structures: developments and issues, Phys. Chem. Chem. Phys., vol.115, issue.324, p.13672, 2014.
DOI : 10.1021/jp2068446

A. Rabis, D. Kramer, E. Fabbri, M. Worsdale, R. Kötz et al., Thin Films: Theoretical and Experimental Insights into Fabrication and Electrocatalytic Properties, The Journal of Physical Chemistry C, vol.118, issue.21, p.11292, 2014.
DOI : 10.1021/jp4120139

G. Ozouf and C. Beauger, Niobium- and antimony-doped tin dioxide aerogels as new catalyst supports for PEM fuel cells, Journal of Materials Science, vol.4, issue.61, p.5305, 2016.
DOI : 10.1039/C4RA03988B

URL : https://hal.archives-ouvertes.fr/hal-01280119

G. Cognard, G. Ozouf, C. Beauger, G. Berthomé, D. Riassetto et al., Benefits and limitations of Pt nanoparticles supported on highly porous antimony-doped tin dioxide aerogel as alternative cathode material for proton-exchange membrane fuel cells, Applied Catalysis B: Environmental, vol.201, p.381, 2017.
DOI : 10.1016/j.apcatb.2016.08.010

URL : https://hal.archives-ouvertes.fr/hal-01368861

G. Cognard, G. Ozouf, C. Beauger, L. Dubau, M. López-haro et al., Insights into the stability of Pt nanoparticles supported on antimony-doped tin oxide in different potential ranges, Electrochimica Acta, vol.245, p.993, 2017.
DOI : 10.1016/j.electacta.2017.05.178

URL : https://hal.archives-ouvertes.fr/hal-01545805

G. Cognard, G. Ozouf, C. Beauger, I. Jiménez-morales, S. Cavaliere et al., Pt Nanoparticles Supported on Niobium-Doped Tin Dioxide: Impact of the Support Morphology on Pt Utilization and Electrocatalytic Activity, Electrocatalysis, vol.68, issue.143, p.51, 2017.
DOI : 10.1016/S0927-0248(00)00372-X

URL : https://hal.archives-ouvertes.fr/hal-01419102

M. K. Debe, A. K. Schmoeckel, G. D. Vernstrorn, and R. Atanasoski, High voltage stability of nanostructured thin film catalysts for PEM fuel cells, Journal of Power Sources, vol.161, issue.2, p.1002, 2006.
DOI : 10.1016/j.jpowsour.2006.05.033

A. Bonakdarpour, K. Stevens, G. D. Vernstrom, R. Atanasoski, A. K. Schmoeckel et al., Oxygen reduction activity of Pt and Pt???Mn???Co electrocatalysts sputtered on nano-structured thin film support, Electrochimica Acta, vol.53, issue.2, p.688, 2007.
DOI : 10.1016/j.electacta.2007.07.038

A. Kongkanand, Z. Liu, I. Dutta, and F. T. Wagner, Electrochemical and Microstructural Evaluation of Aged Nanostructured Thin Film Fuel Cell Electrocatalyst, Journal of the Electrochemical Society, vol.158, issue.11, p.1286, 2011.
DOI : 10.1149/1.013111jes

P. Urchaga, M. Weissmann, S. Baranton, T. Girardeau, and C. Coutanceau, Improvement of the Platinum Nanoparticles???Carbon Substrate Interaction by Insertion of a Thiophenol Molecular Bridge, Langmuir, vol.25, issue.11, p.6543, 2009.
DOI : 10.1021/la9000973

URL : https://hal.archives-ouvertes.fr/hal-01378695

G. Inzelt, M. Pineri, J. W. Schultze, and M. A. Vorotyntsev, Electron and proton conducting polymers: recent developments and prospects, Electrochimica Acta, vol.45, issue.15-16, p.2403, 2000.
DOI : 10.1016/S0013-4686(00)00329-7

G. Nanse, E. Papirer, P. Fioux, F. Moguet, and A. Tressaud, Fluorination of carbon blacks: An X-ray photoelectron spectroscopy study: I. A literature review of XPS studies of fluorinated carbons. XPS investigation of some reference compounds, Carbon, vol.35, issue.2, p.175, 1997.
DOI : 10.1016/S0008-6223(96)00095-4

Y. S. Wu, Y. H. Lee, Z. W. Yang, Z. Z. Guo, and H. C. Wu, Influences of surface fluorination and carbon coating with furan resin in natural graphite as anode in lithium-ion batteries, Journal of Physics and Chemistry of Solids, vol.69, issue.2-3, p.376, 2008.
DOI : 10.1016/j.jpcs.2007.07.010

H. Groult, T. Nakajima, L. Perrigaud, Y. Ohzawa, H. Yashiro et al., Surface-fluorinated graphite anode materials for Li-ion batteries, Journal of Fluorine Chemistry, vol.126, issue.7, p.1111, 2005.
DOI : 10.1016/j.jfluchem.2005.03.014

URL : https://hal.archives-ouvertes.fr/hal-00165116

X. Sun, Y. Zhang, P. Song, J. Pan, L. Zhuang et al., Fluorine-Doped Carbon Blacks: Highly Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction, ACS Catalysis, vol.3, issue.8, p.1726, 2013.
DOI : 10.1021/cs400374k

X. Sun, P. Song, T. Chen, J. Liu, and W. Xu, Fluorine-doped BP 2000: highly efficient metal-free electrocatalysts for acidic oxygen reduction reaction with superlow H2O2 yield, Chemical Communications, vol.118, issue.87, p.10296, 2013.
DOI : 10.1063/1.1536636

S. Berthon-fabry, L. Dubau, Y. Ahmad, K. Guerin, and M. Chatenet, First Insight into Fluorinated Pt/Carbon Aerogels as More Corrosion-Resistant Electrocatalysts for Proton Exchange Membrane Fuel Cell Cathodes, Electrocatalysis, vol.4, issue.23, p.521, 2015.
DOI : 10.1021/cs500449q

URL : https://hal.archives-ouvertes.fr/hal-01185252

Z. Zhao, L. Castanheira, L. Dubau, G. Berthomé, A. Crisci et al., Carbon corrosion and platinum nanoparticles ripening under open circuit potential conditions, Journal of Power Sources, vol.230, p.236, 2013.
DOI : 10.1016/j.jpowsour.2012.12.053

URL : https://hal.archives-ouvertes.fr/hal-00839675

M. X. Wang, F. Xu, H. F. Sun, Q. Liu, K. Artyushkova et al., Nanoscale graphite-supported Pt catalysts for oxygen reduction reactions in fuel cells, Electrochimica Acta, vol.56, issue.5, p.2566, 2011.
DOI : 10.1016/j.electacta.2010.11.019

W. Zhang, M. Dubois, K. Guérin, A. Hamwi, J. Giraudet et al., Solid-state NMR and EPR study of fluorinated carbon nanofibers, Journal of Solid State Chemistry, vol.181, issue.8, p.1915, 2008.
DOI : 10.1016/j.jssc.2008.03.037

M. Dubois, K. Guérin, E. Petit, N. Batisse, A. Hamwi et al., Solid-State NMR Study of Nanodiamonds Produced by the Detonation Technique, The Journal of Physical Chemistry C, vol.113, issue.24, p.10371, 2009.
DOI : 10.1021/jp901274f

H. S. Oh, J. G. Oh, Y. G. Hong, and H. Kim, Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell applications, Electrochimica Acta, vol.52, issue.25, p.7278, 2007.
DOI : 10.1016/j.electacta.2007.05.080

F. Gloaguen, F. Andolfatto, R. Durand, and P. Ozil, Kinetic study of electrochemical reactions at catalyst-recast ionomer interfaces from thin active layer modelling, Journal of Applied Electrochemistry, vol.137, issue.9, p.863, 1994.
DOI : 10.1007/BF00348773

A. Kabbabi, F. Gloaguen, F. Andolfatto, and R. Durand, Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane, Journal of Electroanalytical Chemistry, vol.373, issue.1-2, p.251, 1994.
DOI : 10.1016/0022-0728(94)03503-2

A. Gamez, D. Richard, P. Gallezot, F. Gloaguen, R. Faure et al., Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer, Electrochimica Acta, vol.41, issue.2, p.307, 1996.
DOI : 10.1016/0013-4686(95)00305-X

URL : https://hal.archives-ouvertes.fr/hal-00006371

Y. Takasu, N. Ohashi, X. G. Zhang, Y. Murakami, H. Minagawa et al., Size effects of platinum particles on the electroreduction of oxygen, Electrochimica Acta, vol.41, issue.16, p.2595, 1996.
DOI : 10.1016/0013-4686(96)00081-3

O. Antoine, Y. Bultel, R. Durand, and P. Ozil, Electrocatalysis, diffusion and ohmic drop in PEMFC: Particle size and spatial discrete distribution effects, Electrochimica Acta, vol.43, issue.24, p.3681, 1998.
DOI : 10.1016/S0013-4686(98)00126-1

Y. Shao-horn, W. C. Sheng, S. Chen, P. J. Ferreira, E. F. Holby et al., Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells, Topics in Catalysis, vol.315, issue.3-4, p.285, 2007.
DOI : 10.1007/s11244-007-9000-0

R. W. Pekala, J. C. Farmer, C. T. Alviso, T. D. Tran, S. T. Mayer et al., Carbon aerogels for electrochemical applications, Journal of Non-Crystalline Solids, vol.225, p.74, 1998.
DOI : 10.1016/S0022-3093(98)00011-8

J. Marie, S. Berthon-fabry, P. Achard, M. Chatenet, A. Pradourat et al., Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cell-electrodes: comparison of two different synthesis paths, Journal of Non-Crystalline Solids, vol.350, p.88, 2004.
DOI : 10.1016/j.jnoncrysol.2004.06.038

URL : https://hal.archives-ouvertes.fr/hal-00333057

M. Ouattara-brigaudet, S. Berthon-fabry, C. Beauger, M. Chatenet, N. Job et al., Influence of the carbon texture of platinum/carbon aerogel electrocatalysts on their behavior in a proton exchange membrane fuel cell cathode, International Journal of Hydrogen Energy, vol.37, issue.12, p.9742, 2012.
DOI : 10.1016/j.ijhydene.2012.03.085

URL : https://hal.archives-ouvertes.fr/hal-00699512

H. Oh, J. Oh, and H. Kim, Modification of polyol process for synthesis of highly platinum loaded platinum???carbon catalysts for fuel cells, Journal of Power Sources, vol.183, issue.2, p.600, 2008.
DOI : 10.1016/j.jpowsour.2008.05.070

C. C. Herrmann, G. G. Perrault, and A. A. Pilla, Dual reference electrode for electrochemical pulse studies, Analytical Chemistry, vol.40, issue.7, p.1173, 1968.
DOI : 10.1021/ac60263a011

L. Dubau, T. Asset, R. Chattot, C. Bonnaud, V. Vanpeene et al., Tuning the Performance and the Stability of Porous Hollow PtNi/C Nanostructures for the Oxygen Reduction Reaction, ACS Catalysis, vol.5, issue.9, p.5333, 2015.
DOI : 10.1021/acscatal.5b01248

K. Guérin, J. P. Pinheiro, M. Dubois, Z. Fawal, F. Masin et al., Carbon, Chemistry of Materials, vol.16, issue.9, p.1786, 2004.
DOI : 10.1021/cm034974c

A. Zana, J. Speder, N. E. Reeler, T. Vosch, and M. Arenz, Investigating the corrosion of high surface area carbons during start/stop fuel cell conditions: A Raman study, Electrochimica Acta, vol.114, p.455, 2013.
DOI : 10.1016/j.electacta.2013.10.097

X. Hao, L. Quach, J. Korah, W. A. Spieker, and J. R. Regalbuto, The control of platinum impregnation by PZC alteration of oxides and carbon, Journal of Molecular Catalysis A: Chemical, vol.219, issue.1, p.97, 2004.
DOI : 10.1016/j.molcata.2004.04.026

N. Job, S. Lambert, M. Chatenet, C. J. Gommes, F. Maillard et al., Preparation of highly loaded Pt/carbon xerogel catalysts for Proton Exchange Membrane fuel cells by the Strong Electrostatic Adsorption method, Catalysis Today, vol.150, issue.1-2, p.119, 2009.
DOI : 10.1016/j.cattod.2009.06.022

URL : https://hal.archives-ouvertes.fr/hal-00506564

X. Hao, S. Barnes, and J. R. Regalbuto, A fundamental study of Pt impregnation of carbon: Adsorption equilibrium and particle synthesis, Journal of Catalysis, vol.279, issue.1, p.48, 2011.
DOI : 10.1016/j.jcat.2010.12.021

F. Maillard, S. Schreier, M. Hanzlik, E. R. Savinova, S. Weinkauf et al., Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation, Phys. Chem. Chem. Phys., vol.533, issue.2, p.385, 2005.
DOI : 10.1016/S0022-0728(02)01083-5

URL : https://hal.archives-ouvertes.fr/hal-00420694

F. Maillard, E. R. Savinova, and U. Stimming, CO monolayer oxidation on Pt nanoparticles: Further insights into the particle size effects, Journal of Electroanalytical Chemistry, vol.599, issue.2, p.221, 2007.
DOI : 10.1016/j.jelechem.2006.02.024

URL : https://hal.archives-ouvertes.fr/hal-00333785

L. Dubau, J. Nelayah, S. Moldovan, O. Ersen, P. Bordet et al., Defects do Catalysis: CO Monolayer Oxidation and Oxygen Reduction Reaction on Hollow PtNi/C Nanoparticles, ACS Catalysis, vol.6, issue.7, p.4673, 2016.
DOI : 10.1021/acscatal.6b01106

URL : https://hal.archives-ouvertes.fr/hal-01355740

T. Asset, R. Chattot, J. Nelayah, N. Job, L. Dubau et al., Structure-Activity Relationships for the Oxygen Reduction Reaction in Porous Hollow PtNi/C Nanoparticles, ChemElectroChem, vol.6, issue.153, p.1591, 2016.
DOI : 10.1021/acscatal.6b01106

P. J. Ferreira and Y. Shao-horn, Formation Mechanism of Pt Single-Crystal Nanoparticles in Proton Exchange Membrane Fuel Cells, Electrochemical and Solid-State Letters, vol.16, issue.3, p.60, 2007.
DOI : 10.1073/pnas.82.8.2207

J. H. Jang, S. Jeon, J. H. Cho, S. K. Kim, S. Y. Lee et al., Complex Capacitance Analysis of Ionic Resistance and Interfacial Capacitance in PEMFC and DMFC Catalyst Layers, Journal of The Electrochemical Society, vol.6, issue.11, p.1293, 2009.
DOI : 10.1016/j.jpowsour.2008.10.111

Z. Siroma, J. Hagiwara, K. Yasuda, M. Inaba, and A. Tasaka, Simultaneous measurement of the effective ionic conductivity and effective electronic conductivity in a porous electrode film impregnated with electrolyte, Journal of Electroanalytical Chemistry, vol.648, issue.2, p.92, 2010.
DOI : 10.1016/j.jelechem.2010.08.010

J. A. Shetzline and S. E. Creager, Quantifying Electronic and Ionic Conductivity Contributions in Carbon/Polyelectrolyte Composite Thin Films, Journal of the Electrochemical Society, vol.161, issue.14, p.917, 2014.
DOI : 10.1149/2.0621414jes

E. N. Gribov, N. V. Maltseva, V. A. Golovin, and A. G. Okunev, A simple method for estimating the electrochemical stability of the carbon materials, International Journal of Hydrogen Energy, vol.41, issue.40, p.18207, 2016.
DOI : 10.1016/j.ijhydene.2016.08.118

C. Galeano, J. C. Meier, V. Peinecke, H. Bongard, I. Katsounaros et al., Toward Highly Stable Electrocatalysts via Nanoparticle Pore Confinement, Journal of the American Chemical Society, vol.134, issue.50, p.20457, 2012.
DOI : 10.1021/ja308570c

J. Xie, D. L. Wood-iii, K. L. More, P. Atanassov, and R. L. Borup, Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions, Journal of The Electrochemical Society, vol.92, issue.5, p.1011, 2005.
DOI : 10.1002/(SICI)1521-4095(199805)10:7<515::AID-ADMA515>3.3.CO;2-P

J. Xie, D. L. Wood-iii, D. M. Wayne, T. A. Zawodzinski, P. Atanassov et al., Durability of PEFCs at High Humidity Conditions, Journal of The Electrochemical Society, vol.150, issue.1, p.104, 2005.
DOI : 10.1149/1.1830355