C. B. Weinberg and E. Bell, A blood vessel model constructed from collagen and cultured vascular cells, Science, vol.231, issue.4736, pp.397-400, 1986.
DOI : 10.1126/science.2934816

S. Pashneh-tala, S. Macneil, and F. Claeyssens, The Tissue-Engineered Vascular Graft???Past, Present, and Future, Tissue Engineering Part B: Reviews, vol.22, pp.68-100, 2016.
DOI : 10.1089/ten.teb.2015.0100

URL : http://europepmc.org/articles/pmc4753638?pdf=render

R. E. Harskamp, R. D. Lopes, C. E. Baisden, R. J. De-winter, and J. H. Alexander, Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery, Annals of Surgery, vol.257, issue.5, pp.824-833, 2013.
DOI : 10.1097/SLA.0b013e318288c38d

P. Klinkert, P. N. Post, P. J. Breslau, and J. H. Van-bockel, Saphenous Vein Versus PTFE for Above-Knee Femoropopliteal Bypass. A Review of the Literature, European Journal of Vascular and Endovascular Surgery, vol.27, issue.4, pp.357-362, 2004.
DOI : 10.1016/j.ejvs.2003.12.027

L. Heureux and N. , Human tissue-engineered blood vessels for adult arterial revascularization, Nature Medicine, vol.76, issue.3, pp.361-365, 2006.
DOI : 10.1016/S0003-4975(03)00263-7

C. Quint, M. Arief, A. Muto, A. Dardik, and L. E. Niklason, Allogeneic human tissue-engineered blood vessel, Journal of Vascular Surgery, vol.55, issue.3, pp.790-798, 2012.
DOI : 10.1016/j.jvs.2011.07.098

URL : https://doi.org/10.1016/j.jvs.2011.07.098

T. N. Mcallister, Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study, The Lancet, vol.373, issue.9673, pp.1440-1446, 2009.
DOI : 10.1016/S0140-6736(09)60248-8

J. H. Lawson, Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials, The Lancet, vol.387, issue.10032, pp.2026-2034, 2016.
DOI : 10.1016/S0140-6736(16)00557-2

URL : http://europepmc.org/articles/pmc4915925?pdf=render

W. Li, Long-term evaluation of vascular grafts with circumferentially aligned microfibers in a rat abdominal aorta replacement model, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.119, 2018.
DOI : 10.1161/CIRCULATIONAHA.108.827972

P. V. Popryadukhin, Tissue-Engineered Vascular Graft of Small Diameter Based on Electrospun Polylactide Microfibers, International Journal of Biomaterials, vol.129, issue.6, p.9034186, 2017.
DOI : 10.1067/mva.1991.33494

URL : https://doi.org/10.1155/2017/9034186

M. Khodadoust, D. Mohebbi-kalhori, and N. Jirofti, Fabrication and Characterization of Electrospun Bi-Hybrid PU/PET Scaffolds for Small-Diameter Vascular Grafts Applications, Cardiovascular Engineering and Technology, vol.37, issue.8, pp.73-83, 2018.
DOI : 10.1067/mva.2003.88

C. Weber, Patency and in??vivo compatibility of bacterial nanocellulose grafts as small-diameter vascular substitute, Journal of Vascular Surgery, 2018.
DOI : 10.1016/j.jvs.2017.09.038

X. Ma, Development and in vivo validation of tissue-engineered, small-diameter vascular grafts from decellularized aortae of fetal pigs and canine vascular endothelial cells, Journal of Cardiothoracic Surgery, vol.238, issue.1, 2018.
DOI : 10.1002/path.4635

J. M. Ino, Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin polymer films, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.125, issue.8, pp.1549-1559, 2013.
DOI : 10.1002/(SICI)1097-4636(199603)30:3<295::AID-JBM4>3.0.CO;2-L

N. Alexandre, Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model, International Journal of Pharmaceutics, vol.523, issue.2, pp.515-530, 2017.
DOI : 10.1016/j.ijpharm.2017.02.043

URL : http://hdl.handle.net/10174/19659

N. Alexandre, Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting-In vitro and in vivo studies, Journal of Biomedical Materials Research Part A, vol.102, pp.4262-4275, 2014.

H. Jiang, Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea, Journal of Materials Science: Materials in Medicine, vol.28, issue.3, pp.941-952, 2014.
DOI : 10.1016/j.biomaterials.2006.11.024

G. Leone, PVA/STMP based hydrogels as potential substitutes of human vitreous, Journal of Materials Science: Materials in Medicine, vol.126, issue.8, pp.2491-2500, 2010.
DOI : 10.1295/koron.34.261

J. A. Stammen, S. Williams, D. N. Ku, and R. E. Guldberg, Mechanical properties of a novel PVA hydrogel in shear and unconfined compression, Biomaterials, vol.22, issue.8, pp.799-806, 2001.
DOI : 10.1016/S0142-9612(00)00242-8

J. S. Bach, Hydrogel fibers for ACL prosthesis: Design and mechanical evaluation of PVA and PVA/UHMWPE fiber constructs, Journal of Biomechanics, vol.46, issue.8, pp.1463-1470, 2013.
DOI : 10.1016/j.jbiomech.2013.02.020

URL : https://hal.archives-ouvertes.fr/hal-00821932

S. L. Bourke, A photo-crosslinked poly(vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications, AAPS PharmSci, vol.5, issue.4, p.33, 2003.
DOI : 10.1208/ps050433

URL : http://europepmc.org/articles/pmc2750995?pdf=render

W. K. Wan, G. Campbell, Z. F. Zhang, A. J. Hui, and D. R. Boughner, Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent, Journal of Biomedical Materials Research, vol.29, issue.6, pp.854-861, 2002.
DOI : 10.1055/s-2007-1023453

G. Konig, Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery, Biomaterials, vol.30, issue.8, pp.1542-1550, 2009.
DOI : 10.1016/j.biomaterials.2008.11.011

URL : http://europepmc.org/articles/pmc2758094?pdf=render

M. Chaouat, L. Visage, C. Autissier, A. Chaubet, F. Letourneur et al., The evaluation of a small-diameter polysaccharide-based arterial graft in rats, Biomaterials, vol.27, issue.32, pp.5546-5553, 2006.
DOI : 10.1016/j.biomaterials.2006.06.032

J. Fromageau, Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.54, issue.3, pp.498-509, 2007.
DOI : 10.1109/TUFFC.2007.273

Y. Liu, Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels, Journal of the Mechanical Behavior of Biomedical Materials, vol.3, issue.2, pp.203-209, 2010.
DOI : 10.1016/j.jmbbm.2009.07.001

Y. Liu, N. E. Vrana, P. A. Cahill, and G. B. Mcguinness, Physically crosslinked composite hydrogels of PVA with natural macromolecules: Structure, mechanical properties, and endothelial cell compatibility, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.269, issue.2, pp.492-502, 2009.
DOI : 10.1016/B978-0-444-81708-2.50021-X

H. J. Salacinski, The Mechanical Behavior of Vascular Grafts: A Review, Journal of Biomaterials Applications, vol.81, issue.3, pp.241-278, 2001.
DOI : 10.1038/30522

N. R. Tai, H. J. Salacinski, A. Edwards, G. Hamilton, and A. M. Seifalian, Compliance properties of conduits used in vascular reconstruction, British Journal of Surgery, vol.35, issue.11, pp.1516-1524, 2000.
DOI : 10.1097/00002480-198907000-00124

M. F. Cutiongco, D. E. Anderson, M. T. Hinds, and E. K. Yim, In vitro and ex vivo hemocompatibility of off-the-shelf modified poly(vinyl alcohol) vascular grafts, Acta Biomaterialia, vol.25, pp.97-108, 2015.
DOI : 10.1016/j.actbio.2015.07.039

URL : http://europepmc.org/articles/pmc4762273?pdf=render