B. Berman, 3-D printing: The new industrial revolution, Business Horizons, vol.55, issue.2, pp.155-162, 2012.
DOI : 10.1016/j.bushor.2011.11.003

E. O. Olakanmi, R. F. Cochrane, and K. W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties, Progress in Materials Science, vol.74, pp.74-401, 2015.
DOI : 10.1016/j.pmatsci.2015.03.002

M. Akita, Y. Uematsu, T. Kakiuchi, M. Nakajima, and R. Kawaguchi, Defect-dominated fatigue behavior in type 630 stainless steel fabricated by selective laser melting, Materials Science and Engineering: A, vol.666
DOI : 10.1016/j.msea.2016.04.042

. Sci and . Eng, , pp.19-26, 2016.

Y. J. Liu, S. J. Li, H. L. Wang, W. T. Hou, Y. L. Hao et al., Sercombe and L

C. Zhang, Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting, Acta Mater, vol.113, pp.56-67, 2016.

H. Schwab, F. Palm, U. Kühn, and J. Eckert, Microstructure and mechanical properties of the near-beta titanium alloy Ti-5553 processed by selective laser melting, Materials & Design, vol.105, pp.75-80, 2016.
DOI : 10.1016/j.matdes.2016.04.103

M. Averyanova, P. Bertrand, and B. Verquin, Manufacture of Co-Cr dental crowns and bridges by selective laser Melting technology, Virtual Phys, Prototyp, vol.6, pp.179-185, 2011.

P. Wei, Z. Wei, Z. Chen, J. Du, Y. He et al., The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior, Applied Surface Science, vol.408, pp.48-86, 2017.
DOI : 10.1016/j.apsusc.2017.02.215

Y. Hagedorn, J. Wilkes, W. Meiners, K. Wissenbach, and R. Poprawe, Net shaped high performance oxide ceramic parts by selective laser melting, Phys. Procedia, vol.5, pp.587-594, 2010.

J. Wilkes, Y. Hagedorn, W. Meiners, and K. Wissenbach, Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting, Rapid Prototyp, J, vol.19, pp.51-57, 2013.

S. L. Sing, W. Y. Yeong, F. E. Wiria, B. Y. Tay, Z. Zhao et al., Direct selective laser sintering and melting of ceramics: a review, Rapid Prototyp, J, vol.23, pp.611-623, 2017.

M. X. Gan and C. H. Wong, Properties of selective laser melted spodumene glass-ceramic, Journal of the European Ceramic Society, vol.37, issue.13, pp.4147-4154, 2017.
DOI : 10.1016/j.jeurceramsoc.2017.04.060

A. V. Gusarov and J. Kruth, Modelling of radiation transfer in metallic powders at laser treatment, International Journal of Heat and Mass Transfer, vol.48, issue.16, pp.3423-3434, 2005.
DOI : 10.1016/j.ijheatmasstransfer.2005.01.044

X. C. Wang and J. Kruth, A simulation model for direct selective laser sintering of metal powders, Computational Techniques for Materials, Composites and Composite Structures, pp.3423-3434, 2000.
DOI : 10.4203/ccp.67.1.7

URL : https://lirias.kuleuven.be/handle/123456789/161198

S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Materialia, vol.108, pp.36-45, 2016.
DOI : 10.1016/j.actamat.2016.02.014

URL : https://manuscript.elsevier.com/S135964541630088X/pdf/S135964541630088X.pdf

A. V. Gusarov and I. Smurov, Radiation transfer in metallic powder beds used in laser processing, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.111, issue.17-18, pp.2517-2527, 2010.
DOI : 10.1016/j.jqsrt.2010.07.009

N. E. Hodge, R. M. Ferencz, and J. M. Solberg, Implementation of a thermomechanical model for the simulation of selective laser melting, Computational Mechanics, vol.65, issue.9???12, pp.33-51, 2014.
DOI : 10.1007/s00170-012-4271-4

W. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath et al., Overview of modelling and simulation of metal powder bed fusion process, Mater. Sci. Technol, pp.31-957, 2015.

J. F. Li, L. Li, and F. H. Stott, Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials, International Journal of Heat and Mass Transfer, vol.47, issue.6-7, pp.47-1159, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2003.10.002

Q. Chen, G. Guillemot, -. Ch, M. Gandin, and . Bellet, Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramic materials, Additive Manufacturing, vol.16, pp.16-124, 2017.
DOI : 10.1016/j.addma.2017.02.005

URL : https://hal.archives-ouvertes.fr/hal-01552410

M. Markl and C. Körner, Multi-scale modeling of powder-bed-based additive manufacturing, Ann. Rev. Mater. Res, vol.46, pp.1-34, 2016.
DOI : 10.1146/annurev-matsci-070115-032158

Y. Liu, Y. Yang, S. Mai, D. Wang, and C. Song, Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder, Materials & Design, vol.87, pp.797-806, 2015.
DOI : 10.1016/j.matdes.2015.08.086

A. V. Gusarov, I. Yadroitsev, and P. , Heat transfer modelling and stability analysis of selective laser melting, Applied Surface Science, vol.254, issue.4, pp.975-979, 2007.
DOI : 10.1016/j.apsusc.2007.08.074

D. Gu and Y. Shen, Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods, Materials & Design, vol.30, issue.8, pp.2903-2910, 2009.
DOI : 10.1016/j.matdes.2009.01.013

C. Chan, J. Mazumder, and M. M. Chen, A two-dimensional transient model for convection in laser melted pool, Metallurgical Transactions A, vol.14, issue.12, pp.2175-2184, 1984.
DOI : 10.2172/4205348

P. Yuan and D. Gu, Molten pool behavior and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments, J. Phys. D
DOI : 10.1088/0022-3727/48/3/035303

, Appl. Phys, vol.48, issue.16, 2015.

C. Qiu, C. Panwisawas, M. Ward, H. C. Basoalto, J. W. Brooks et al., On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Materialia, vol.96, pp.96-72, 2015.
DOI : 10.1016/j.actamat.2015.06.004

O. Desmaison, M. Bellet, and G. Guillemot, A level set approach for the simulation of the multipass hybrid laser/GMA welding process, Computational Materials Science, vol.91, pp.91-240, 2014.
DOI : 10.1016/j.commatsci.2014.04.036

URL : https://hal.archives-ouvertes.fr/hal-01004625

S. Chen, G. Guillemot, and C. Gandin, Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes, Acta Materialia, vol.115, pp.448-467, 2016.
DOI : 10.1016/j.actamat.2016.05.011

URL : https://hal.archives-ouvertes.fr/hal-01354148

A. Saad, C. Gandin, and M. Bellet, Temperature-based energy solver coupled with tabulated thermodynamic properties ??? Application to the prediction of macrosegregation in multicomponent alloys, Computational Materials Science, vol.99, pp.99-221, 2015.
DOI : 10.1016/j.commatsci.2014.12.009

URL : https://hal.archives-ouvertes.fr/hal-01111022

S. S. Sih and J. W. Barlow, The Prediction of the Emissivity and Thermal Conductivity of Powder Beds, Particulate Science and Technology, vol.63, issue.4, pp.427-440, 2010.
DOI : 10.1002/cite.330421408

J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tension, Journal of Computational Physics, vol.100, issue.2, pp.335-354, 1992.
DOI : 10.1016/0021-9991(92)90240-Y

M. Shakoor, B. Scholtes, P. Bouchard, and M. Bernacki, An efficient and parallel level set reinitialization method ??? Application to micromechanics and microstructural evolutions, Applied Mathematical Modelling, vol.39, issue.23-24, pp.39-7291, 2015.
DOI : 10.1016/j.apm.2015.03.014

URL : https://hal.archives-ouvertes.fr/hal-01139858

T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of Computational Physics, vol.230, issue.7, pp.2391-2405, 2011.
DOI : 10.1016/j.jcp.2010.11.041

URL : https://hal.archives-ouvertes.fr/hal-00579536

R. Morrell, Handbook of Properties of Technical & Engeering Ceramics, H.M.S.O, 1985.

, Dry air properties, 2017.

M. W. Chase, Thermochemical tables. NIST-JANAF, 1998.

Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. T. Lee, Thermal expansion nonmetallic solids, pp.176-177, 1984.

D. Langstaff, M. Gunn, G. N. Greaves, A. Marsing, and F. Kargl, Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids, Review of Scientific Instruments, vol.5, issue.12, 2013.
DOI : 10.1557/JMR.1995.1823

P. Paradis and T. Ishikawa, Surface Tension and Viscosity Measurements of Liquid and Undercooled Alumina by Containerless Techniques, Japanese Journal of Applied Physics, vol.44, issue.7A, pp.5082-5085, 2005.
DOI : 10.1143/JJAP.44.5082

S. A. Khairallah and A. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, Journal of Materials Processing Technology, vol.214, issue.11, pp.2027-2636, 2014.
DOI : 10.1016/j.jmatprotec.2014.06.001