T. Barfoot, State Estimation for Robotics, 2017.

T. Barfoot and P. Furgale, Associating uncertainty with threedimensional poses for use in estimation problems, IEEE Transactions on Robotics, vol.30, issue.3, pp.679-693, 2014.

A. Barrau and S. Bonnabel, Intrinsic filtering on Lie groups with applications to attitude estimation, IEEE Transactions on Automatic Control, vol.60, issue.2, pp.436-449, 2015.

A. Barrau and S. Bonnabel, Intrinsic filtering on SO (3) with discretetime observations. Decision and Control (CDC), IEEE 52nd Annual Conference on, pp.3255-3260, 2013.

A. Barrau and S. Bonnabel, An EKF-SLAM algorithm with consistency properties arXiv preprint, 2015.

A. Barrau and S. Bonnabel, The invariant extended Kalman filter as a stable observer, IEEE Transactions on Automatic Control, vol.62, issue.4, pp.1797-1812, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01692380

A. Barrau and S. Bonnabel, Invariant Kalman Filtering, Robotics, and Autonomous Systems, vol.1, pp.237-257, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01982804

J. Berger, A. Neufeld, F. Becker, F. Lenzen, and C. Schnorr, Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations, International Conference on Scale Space and Variational Methods in Computer Vision, pp.397-409, 2015.

S. Bonnabel, P. Martin, and P. Rouchon, Non-linear symmetrypreserving observers on Lie groups, IEEE Transactions on Automatic Control, vol.54, issue.7, pp.1709-1713, 2009.
DOI : 10.1109/tac.2009.2020646

URL : http://arxiv.org/pdf/0707.2286

S. Bonnabel, Left-invariant extended Kalman filter and attitude estimation, IEEE conf, pp.1027-1032, 2007.
DOI : 10.1109/cdc.2007.4434662

G. Bourmaud, R. Mégret, A. Giremus, and Y. Berthoumieu, Discrete extended Kalman filter on Lie groups, EUSIPCO, 2013 Proceedings of the 21st European, pp.1-5, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00903252

R. W. Brockett, Lie algebras and Lie groups in control theory, Geometric methods in system theory, pp.43-82, 1973.

G. Chirikjian, Stochastic Models, Information Theory, and Lie Groups, Analytic Methods and Modern Applications, vol.2, 2011.

J. L. Crassidis, F. L. Markley, and Y. Cheng, Survey of nonlinear attitude estimation methods, Journal of guidance, control, and dynamics, vol.30, issue.1, pp.12-28, 2007.

T. E. Duncan, An estimation problem in compact Lie groups, Systems & Control Letters, vol.10, issue.4, pp.257-263, 1988.

T. E. Duncan, Some filtering results in Riemann manifolds, Information and Control, vol.35, issue.3, pp.182-195, 1977.

E. Hairer, C. Lubich, C. , and G. Wanner, Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, 2006.

Y. Han and F. C. Park, Least squares tracking on the Euclidean group, IEEE Transactions on, vol.46, issue.7, pp.1127-1132, 2001.

R. Hartley, M. G. Jadidi, J. W. Grizzle, and R. M. Eustice, ContactAided Invariant Extended Kalman Filtering for Legged Robot State Estimation, 2018.

, S. Helgason Differential Geometry, Lie Groups and Symmetric Spaces Academic, 1978.

M. Hua, P. Martin, and T. Hamel, Stability analysis of velocityaided attitude observers for accelerated vehicles, Automatica, vol.63, pp.11-15, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01326788

K. Itô, Stochastic differential equations in a differentiable manifold, Nagoya Mathematical Journal, vol.1, pp.35-47, 1950.

M. Izadi and A. Sanyal, Rigid body attitude estimation based on the Lagrange-dAlembert principle, Automatica, vol.50, issue.10, pp.2570-2577, 2014.

C. Lagemann, J. Trumpf, and R. Mahony, Gradient-Like Observers for Invariant Dynamics on a Lie group, IEEE Trans. on Automatic Control, vol.55, issue.2, pp.367-377, 2010.

T. Mahony, J. Hamel, C. Trumpf, and . Lageman, Nonlinear attitude observers on so (3) for complementary and compatible measurements: A theoretical study, Proceedings of the 48th IEEE Conference on, pp.6407-6412, 2009.

H. P. Mckean, Stochastic integrals, vol.353, 1969.

H. Munthe-kaas, High order Runge-Kutta methods on manifolds, vol.29, pp.115-127, 1999.

S. Ng and P. E. Caines, Nonlinear filtering in Riemannian manifolds, IMA journal of math. control and information, vol.2, issue.1, pp.25-36, 1985.

F. Perrin, ´ Etude mathématique du mouvement brownien de rotation, 1928.

S. M. Persson and I. Sharf, Invariant trapezoidal Kalman filter for application to attitude estimation, In Journal of Guidance, Control, and Dynamics, vol.36, issue.3, pp.721-733, 2013.

M. Pontier and J. Szpirglas, Filtering on manifolds, Stochastic Modelling and Filtering, pp.147-160, 1987.

S. Said and J. H. Manton, On filtering with observation in a manifold: Reduction to a classical filtering problem, SIAM Journal on Control and Optimization, vol.51, issue.1, pp.767-783, 2013.
DOI : 10.1137/120887187

Y. Song and J. W. Grizzle, The extended Kalman filter as a local asymptotic observer for nonlinear discrete-time systems, American Control Conference, pp.3365-3369, 1992.
DOI : 10.23919/acc.1992.4792775

A. S. Willsky, Some estimation problems on Lie groups, Geometric Methods in System Theory, vol.3, pp.305-314, 1973.
DOI : 10.1007/978-94-010-2675-8_21

N. G. Van-kampen, Stochastic processes in physics and chemistry, 1992.

A. S. Willsky and S. I. Marcus, Estimation for bilinear stochastic systems, Variable Structure Systems with Application to Economics and Biology, pp.116-137, 1975.
DOI : 10.1007/978-3-642-47457-6_7

URL : http://hdl.handle.net/2060/19740020921

A. S. Willsky, Dynamical Systems Defined on Groups: Structural Properties and Estimation, 1973.

K. Yosida, On brownian motion in a homogeneous riemannian space, Pacific Journal of Mathematics, vol.2, issue.2, pp.263-270, 1952.
DOI : 10.2140/pjm.1952.2.263

URL : http://msp.org/pjm/1952/2-2/pjm-v2-n2-p14-s.pdf

M. Zamani, J. Trumpf, and R. Mahony, Minimum-energy filtering for attitude estimation, IEEE Transactions on Automatic Control, vol.58, issue.11, pp.2917-2921, 2013.
DOI : 10.1109/tac.2013.2259092

D. E. Zlotnik and J. R. Forbes, Gradient-based observer for simultaneous localization and mapping, IEEE Trans. on Automatic Control, 2018.
DOI : 10.1109/tac.2018.2829467