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Abstract. We present in this paper a time-domain Discontinuous Galerkin dissipation-

free method for the transient solution of the three-dimensional linearized Euler equations

around a steady-state solution. In the general context of a non-uniform supporting flow,

we prove, using the well-known symmetrization of Euler equations, that some aeroacoustic

energy satisfies a balance equation with source term at the continuous level, and that our

numerical framework satisfies an equivalent balance equation at the discrete level and

is genuinely dissipation-free. Moreover, there exists a correction term in aeroacoustic

variables such that the aeroacoustic energy is exactly preserved, and therefore the stability

of the scheme can be proved. This leads to a new filtering of Kelvin-Helmholtz instabilities.

In the case of P1 Lagrange basis functions and tetrahedral unstructured meshes, a parallel

implementation of the method has been developed, based on message passing and mesh

partitioning. Three-dimensional numerical results confirm the theoretical properties of the

method. They include test-cases where Kelvin-Helmholtz instabilities appear and can be

eliminated by addition of the source term.

1 INTRODUCTION

Aeroacoustics is a domain where numerical simulation meets great expansion. The
minimization of acoustic pollutions by aircrafts at landing and take off, or more generally
by aerospace and terrestrial vehicles, is now an industrial concern, related to more and
more severe norms. Different approaches coexist under the Computational Aeroacoustics
activity. The most widely used methods belong to classical Computational Fluid Dynam-
ics and consist in solving partial differential equations for the fluid, without distinction
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between the supporting (possibly steady-state) flow and acoustic perturbations1. The
equations modeling the fluid can be Euler or Navier-Stokes equations, possibly including
extended models like turbulence, LES techniques, etc2. One particular difficulty of these
approaches is the difference in magnitude between the flow and acoustic perturbations,
then requiring very accurate – and CPU-consuming – numerical methods.

An alternative has developed recently with approaches consisting in separating the
determination of the supporting steady-state flow and in modeling the generation of noise
(for example by providing equivalent acoustic sources), from the propagation of acoustic
perturbations3, 4, 5. For this problem, linearized Euler equations around the supporting
flow are to be solved and provide a good description of the propagation of aeroacoustic
perturbations in a smoothly varying heterogeneous and anisotropic medium. This is not
exactly the case of more simple models based on Lighthill analogy6 or of the third-order
equation of Lilley7 (a clear description can be found in a more recent reference8). The
noise source modeled or derived from the steady-state flow are then dealt with as acoustic
source terms in the linearized Euler equations.

The work presented here is devoted to the numerical solution of linearized Euler equa-
tions around steady-state discretized flows, obtained using a given Euler solver. The
supporting flow considered is always smooth and subsonic, it can be uniform or fully non-
uniform. Since we intend to consider complex geometries in three space dimensions, we
consider unstructured tetrahedral space discretizations. In this context, we propose a time
domain Discontinuous Galerkin dissipation-free method based on P1 Lagrange elements on
tetrahedra. The method is derived from similar methods developed for three-dimensional
time-domain Maxwell equations9. We use an element-centered formulation with centered
numerical fluxes and an explicit leap-frog time scheme. This kind of method provides a
dissipation-free approximation of propagation equations and allows for the accurate es-
timation of aeroacoustic energy variation, which is not possible with numerical methods
(finite volumes, discontinuous Galerkin, spectral elements) based on upwind numerical
fluxes.

More precisely, the main results of this paper concern both the linearized Euler equa-
tions at the continuous level, and the numerical method we propose. They can be summed
up the following way:

1. for a uniform supporting flow, at the continuous level (i.e. before space discretiza-
tion), some quadratic energy verifies a balance equation without source term. This
means energy is conserved (up to boundaries);

2. in this “uniform supporting flow” case, we are able to prove that our Discontinuous
Galerkin method (with leap-frog time-scheme and centered fluxes) introduces no
dissipation even on unstructured simplicial meshes (some discrete energy is exactly
conserved, or simply non-increasing when absorbing boundary conditions are used);
therefore we claim that we “control energy variations in the uniform case”;
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3. accordingly, for a non-uniform supporting flow, at the continuous level (i.e. be-
fore space discretization), we use the well-known symmetrization of nonlinear Euler
equations 10 to derive an aeroacoustic energy which verifies some balance equation
with source term. Because of this unsigned source term, aeroacoustic waves can be
damped or excited by the supporting flow. It is responsible for example for Kelvin-
Helmholtz instabilities. These instabilities are due to the model (linearized Euler
equations), not to the numerical method;

4. in the “non uniform supporting flow” case, we are able to prove that, using an
adapted version of the same Discontinuous Galerkin method on unstructured sim-
plicial meshes, some “discrete” energy balance equation with source term is also
verified. We claim our method is still non-dissipative. The good point is that we
are able to reproduce these instabilities. The bad point is that we cannot damp
them artificially (like methods based on upwind fluxes, which damp instabilities, in
an uncontrolled way though);

5. we show finally that there exists a discrete source term such that energy is ex-
actly conserved and the stability of the scheme can be proved. Therefore the non-
dissipative DGTD method provides an accurate tool for controlling phenomena like
Kelvin-Helmholtz instabilities.

2 LINEARIZATION OF EULER EQUATIONS

We consider here equations for the propagation of acoustic waves through a steady
smooth inviscid flow. Therefore, we linearize the three-dimensional Euler equations
around a given steady flow and only take into account first-order perturbation terms.
For a perfect inviscid gas, Euler equations read:

∂t













ρ
ρu
ρv
ρw
e













+ ∂x













ρu
ρu2 + p

ρuv
ρuw

(e + p)u













+ ∂y













ρv
ρuv

ρv2 + p
ρvw

(e + p)v













+ ∂z













ρw
ρuw
ρvw

ρw2 + p
(e + p)w













= 0, (1)

where ρ, ~v = t (u, v, w), e and p denote respectively the density, the velocity, the volumic
total energy and the pressure, given by the perfect gas law p = (γ−1)(e− 1

2
ρ‖~v‖2), where

γ is a fixed constant (γ > 1).
When the steady supporting flow is uniform, the equations obtained by linearizing the

Euler equations are simple, in the sense that they naturally involve symmetric matrices
and lead to a Friedrich’s system (if the intuitive conservative variables are used). This
symmetry also lead naturally energy conservation properties. However, things are more
complex when the steady supporting flow is not uniform. In that case, the steady flow is
defined by smoothly varying physical quantities (ρ0, ~v0, p0). Linearizing straightforwardly
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Euler equations (1) yields:

∂t
~W + ∂x

(

A0
x

~W
)

+ ∂y

(

A0
y

~W
)

+ ∂z

(

A0
z
~W

)

= 0, (2)

where ~W now denotes the perturbations of conservative variables (i.e. ~WT = (δρ, ρ0δ~v+
~v0δρ, δp/(γ − 1) + ρ0~v0.δ~v + ‖~v0‖2δρ/2)) and the space-varying matrices A0

x, A0
y, and A0

z

are given in function of γ̃ = γ − 1, α0 = c2
0/γ̃ + ‖~v0‖2/2, β0 = (γ − 2)‖V0‖2/2− c2

0/γ̃, and
the canonical basis (~ex, ~ey, ~ez) of R3 by

A0
s =





0 t ~es 0
γ̃

2
‖~v0‖2~es − (~v0.~es)~v0 (~v0.~es)I3 − γ̃~es

t ~v0 + ~v0
t ~es γ̃~es

β0(~v0.~es) α0
t ~es − γ̃(~v0.~es)

t ~v0 γ(~v0.~es)



 , s ∈ {x, y, z}. (3)

In this equation, the matrices A0
x, A0

y, and A0
z are not symmetric anymore, and it is very

difficult to deduce any aeroacoustic energy balance equation. Therefore, we consider other
acoustic variables, derived from the quite classical symmetrization of Euler equations.
Assuming the flow is smooth enough, the change of variables (ρ, ρ~v, e) → (− eγ̃

p
+ γ + 1−

ln
(

p

ργ

)

, ργ̃

p
~v,−ργ̃

p
) transforms Euler equations (1) into a symmetric system of conservation

laws (i.e. Jacobians of fluxes are symmetric matrices). Accordingly, the linearization
of these symmetrized Euler equations leads to more complex aeroacoustic equations for
perturbations of the new variables, which can be written as

A0
0∂t

~V + ∂x

(

Ã0
x
~V

)

+ ∂y

(

Ã0
y
~V

)

+ ∂z

(

Ã0
z
~V

)

= 0, (4)

where ~V is given in function of variables ~W by ~V = A0
0
−1 ~W and

A0
0 =

ρ0

γ̃





1 t ~v0 α0 − c2
0/γ

~v0
c20
γ

I3 + ~v0
t ~v0 α0~v0

α0 − c2
0/γ α0

t ~v0 α2
0 − c4

0/ (γγ̃)



 ; Ã0
s = A0

sA
0
0 , s ∈ {x, y, z}. (5)

A0
0 clearly is symmetric and it can be proved that it is definite positive (and then not

singular). Eq. 4 can also be obtained simply by replacing ~W by A0
0
~V in Eq. 2 (and by

noting that ∂tA
0
0 = 0). Finally, the reader can also check that the symmetric matrices Ãs

(s ∈ {x, y, z}) are given by

Ã0
s = (~v0.~es) A0

0 +
p0

γ̃





0 t ~es (~v0.~es)
~es ~es

t ~v0 + ~v0
t ~es (~v0.~es)~v0 + α0~es

(~v0.~es) (~v0.~es)
t ~v0 + α0

t ~es 2α0(~v0.~es)



 .

Then, the volumic aeroacoustic energy E defined by E = 1
2

t ~WA0
0
−1 ~W ≡ 1

2

t ~VA0
0
~V verifies

the following balance equation with source term:

∂tE + div ~F = S, with

{

Fs =
t ~VÃ0

s
~V, s ∈ {x, y, z}.

S = −1
2

t ~V
[

∂x(Ã
0
x) + ∂y(Ã

0
y) + ∂z(Ã

0
z)

]

~V.
(6)
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Thus the aeroacoustic energy is not conserved and the variations in the steady flow con-
sidered can damp or amplify aeroacoustic waves, unless the source term vanishes (which
is the case for a uniform flow for example). In the sequel, we shall mainly discretize the
conservative form (2), but we shall need the equivalent symmetric form (4) for discussions
concerning energy conservation and stability.

3 A DISCONTINUOUS GALERKIN TIME-DOMAIN METHOD

Discontinuous Galerkin methods have been widely used with success for the numerical
simulation of acoustic or electromagnetic wave propagation in the time domain9, 11. The
very same type of methods can be used for the problems considered here, i.e. the propa-
gation of aeroacoustic waves through a non-uniform flow12. In this section, we present the
DGTD method we use for the model equations (2). We recall the numerical properties
of the space discretization. Then we introduce the leap-frog time scheme and give some
details on properties related to energy conservation and stability.

In the whole paper, we assume we dispose of a partition of a polyhedral domain Ω
(whose boundary ∂Ω is the union of physical boundaries of objects ∂Ωphys and of the
far field artificial boundary ∂Ω∞). Ω is partitioned into a finite number of polyhedra
(each one having a finite number of faces). For each polyhedron Ti, called ”control vol-
ume” or ”cell”, Vi denotes its volume. We call face between two control volumes their
intersection, whenever it is a polyhedral surface. The union of all faces F is partitioned
into internal faces F int = F/∂Ω, physical faces Fphys = F

⋂

∂Ωphys and absorbing faces
Fabs = F

⋂

∂Ω∞. For each internal face aik = Ti

⋂

Tk, we denote by Sik the measure
of aik and by ~nik the unitary normal, oriented from Ti towards Tk. The same definitions
are extended to boundary faces, the index k corresponding to a fictitious cell outside the
domain. Finally, we denote by Vi the set of indices of the control volumes neighboring a
given control volume Ti (having a face in common). We also define the perimeter Pi of Ti

by Pi =
∑

k∈Vi
Sik. We recall the following geometrical property for all control volumes:

∑

k∈Vi
Sik~nik = 0.

Following the general principle of discontinuous Galerkin finite element methods, the
unknown field inside each control volume is seeked for as a linear combination of local
basis vector fields ~ϕij, 1 ≤ j ≤ di (generating the local space Pi) and the approximate
field is allowed to be fully discontinuous across element boundaries. Thus, a numerical
flux function has to be defined to approximate fluxes at control volumes interfaces, where
the approximate solution is discontinuous.

This context is quite general. Actual implementations of the method have been con-
sidered only on tetrahedral meshes, where control volumes are the tetrahedra themselves.
We shall only consider constant (P0) or linear (P1) approximations inside tetrahedra.
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3.1 Time and space discretizations

We only consider here the most general case of aeroacoustic wave propagation in a
non-uniform steady flow. Also, in order to limit the amount of computations, we restrict
our study to piecewise constant matrices A0

s (s ∈ {x, y, z}) given in Eq. (3). For each
control volume Ti, for s ∈ {x, y, z}, we denote by Ai

s an approximate for the average value
of A0

s over Ti. Dot-multiplying Eq. (2) by any given vector field ~ϕ, integrating over Ti and
integrating by parts yields

∫

Ti

~ϕ · ∂ ~W

∂t
=

∫

Ti





∑

s∈{x,y,z}

t ∂s~ϕ A0
s




~W −

∫

∂Ti

~ϕ ·





∑

s∈{x,y,z}

nsA
0
s
~W



 . (7)

Inside volume integrals over Ti, we replace the field ~W by the approximate field ~Wi and
the matrices A0

s by their respective average values Ai
s. For boundary integrals over ∂Ti,

~W is discontinuous, and we define totally centered numerical fluxes, i.e.:

{

∀i, ∀k ∈ Vi,
[

(nikx
A0

x + niky
A0

y + nikz
A0

z)
~W

]

|aik

' 1
2

(

Pi
ik

~Wi + Pk
ik

~Wk

)

,

with Pi
ik = nikx

Ai
x + niky

Ai
y + nikz

Ai
z, Pk

ik = nikx
Ak

x + niky
Ak

y + nikz
Ak

z .
(8)

Concerning the time discretization, we use a three-level leap-frog scheme. The unknowns
~Wi are approximated at integer time-stations tn = n∆t. Assuming we dispose of ~Wn−1

i

and ~Wn
i , the unknowns ~Wn+1

i are seeked for in Pi such that, ∀~ϕ ∈ Pi,

∫

Ti

~ϕ ·
~Wn+1

i − ~Wn−1
i

2∆t
=

∫

Ti

∑

s∈{x,y,z}

t ∂s~ϕ Ai
s
~Wn

i −
∑

k∈Vi

∫

aik

~ϕ · Pi
ik

~Wn
i + Pk

ik
~Wn

k

2
. (9)

Again, the time scheme above is almost explicit. Each time step only requires the inversion
of local symmetric positive definite matrices of size (di × di). In the particular case where
Pi is a complete linear (P1) representation, these 20 × 20 matrices are indeed made of 5
4 × 4 diagonal blocks (which are equal to the classical P1 mass matrix).

3.2 Boundary conditions

Boundary conditions are dealt with in a weak sense. For the physical boundary, we
consider only a slip condition, which is set on both the steady flow and the acoustic
perturbations. This means that we assume that for any slip boundary face aik belonging
to the control volume Ti, the steady solution of Euler equations verifies a slip condition
at the discrete level, i.e. ~nik · ~v0

i = 0. For the acoustic perturbations, we use a mirror

fictitious state ~Wk in the computation of the boundary flux given in Eq. (9). We take
δρk = δρi, δpk = δpi, and δ~vk = δ~vi − 2(~nik · ~vi)~nik (which implies (δ~vk − δ~vi) × ~nik = 0
and δ~vk.~nik = −δ~vi.~nik).
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For an absorbing boundary face aik, upwinding is used to select outgoing waves only.
Before discretization in time, classical upwinding leads to a boundary flux Fik given by
Fik = (Pi

ik)
+ ~Wi, where for any diagonalizable matrix Q = S−1DS with D diagonal,

Q+ = (Q+ |Q|)/2 and terms of the diagonal matrix |D| are the moduli of the eigenvalues.

This general idea leads to Pk
ik

~Wk = |Pi
ik| ~Wi. However, for this intuitive numerical flux,

it is very difficult to prove that the resulting time-scheme is stable and that energy is
actually sent in the exterior domain. We then consider the numerical flux based on the

following fictitious state: Pk
ik

~Wn
k =

√
Ai

0

∣

∣

∣

√
Ai

0

−1
Pi

ik

√
Ai

0

∣

∣

∣

√
Ai

0

−1 ~Wn−1

i + ~Wn+1

i

2
, where

√
Ai

0 is the

positive square root of the symmetric definite positive matrix Ai
0. Indeed, this expression

derives from the intuitive upwind flux for the symmetrized equations (4). It leads to
time-scheme which is locally implicit near absorbing boundaries (i.e. independent linear
systems are to be solved inside elements having at least one absorbing face, at each time
step). It leads to a globally second-order time-accurate scheme. A less accurate explicit

version is also available12. It takes the form Pk
ik

~Wn
k =

√
Ai

0

∣

∣

∣

√
Ai

0

−1
Pi

ik

√
Ai

0

∣

∣

∣

√
Ai

0

−1 ~Wn−1
i .

3.3 Energy balance and stability

In order to investigate stability, we define a discrete aeroacoustic energy Fn by:

Fn =
1

2

∑

i

∫

Ti

t ~Wn
i Ai

0

−1 ~Wn
i +

t ~Wn+1
i Ai

0

−1 ~Wn−1
i

+
∆t

4

∑

aik∈Fabs

∫

aik

t (

Ai
0

−1 ~Wn−1
i

)

Mik

(

Ai
0

−1
(

~Wn−1
i + ~Wn+1

i

))

,

with Mik =
√
Ai

0

∣

∣

∣

√
Ai

0

−1
Pi

ik

√
Ai

0

∣

∣

∣

√
Ai

0 ≡
√
Ai

0

∣

∣

∣

√
Ai

0

−1
P̃i

ik

√
Ai

0

−1
∣

∣

∣

√
Ai

0. One can show that the

matrices Mik are symmetric and positive. One can show that the variation through one
time step of the aeroacoustic energy is given by:

Fn+1 − Fn = −∆t

2

∑

aik∈F int

∫

aik

t ~Vn
i (P̃k

ik − P̃i
ik)

~Vn+1
k +

t ~Vn+1
i (P̃k

ik − P̃i
ik)

~Vn
k

−∆t

4

∑

aik∈Fabs

∫

aik

t (

~Vn−1
i + ~Vn+1

i

)

Mik

(

~Vn−1
i + ~Vn+1

i

)

. (10)

where we have used the auxiliary variables ~Vn
i ≡ Ai

0
−1 ~Wn

i , ∀i, ∀n. The first term is a
discrete version of the source term appearing in Eq. (6). The second term is negative and
shows that our absorbing boundary conditions actually absorbs energy. This results also
shows that the slip boundary condition has no influence on the global energy balance.

In order to prove stability, one can show that Fn is a quadratic positive definite form
of numerical unknowns ( ~Wn−1

i , ~Wn
i ) under some CFL-like sufficient stability condition on

7
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the time-step ∆t:

∀i, ∀k ∈ Vi, ∆t (2λiαi + βikρik) <
2Vi

Pi

, (11)

where αi and βik are dimensionless regularity coefficients depending of basis functions and
element aspect ratio, λi = |ui

0| + |vi
0|+ |wi

0| + 3ci
0, and ρik = |~vi

0 · ~nik| + ci
0 for a boundary

face and ρ2
ik = sup

(

(|~vi
0 · ~nik| + ci

0))
2
ρ

(

Ak
0A

i
0
−1

)

,
(

|~vk
0 · ~nik| + ck

0

)2
ρ

(

Ai
0A

k
0
−1

))

for an

internal face (ρ here denotes the spectral radius of a matrix).
In the case of a uniform flow, we have Pi

ik = Pk
ik. Thus the aeroacoustic energy is

non-increasing (and exactly conserved if no absorbing boundary is present, which shows
the scheme is genuinely non-diffusive) and the scheme is stable under a CFL-type stability
condition depending on the size of elements and supi (‖~vi‖ + c0

i ).

3.4 Addition of a stabilization term

We have seen the energy Fn is not exactly conserved when the supporting flow is not
uniform. However, one can show that it is indeed exactly conserved (away from absorbing
boundary conditions) if a discrete source term H is added in each element such that:

∫

Ti

H~ϕij =
1

4

∑

k∈Vi

∫

aik

~ϕij ·
(

P̃k
ik − P̃i

ik

)

Ak
0

−1 ~Wn
k .

This property is not so intuitive, since the quadratic nature of the energy does not imply
such a source term exists in general. One can notice that this source term is related to
internal faces in the mesh, and that it vanishes if the flow is uniform or locally uniform.
With this additional source term, the energy is conserved and therefore all numerical
unknowns remain bounded.

However, one must have in mind that some instabilities should naturally occur when
linearized Euler equations are considered. The addition of this source term has modified
the structure of aeroacoustic equations, since Kelvin-Helmholtz instabilities for example
can no more appear. Of course, one can wonder if this correction term perturbs only
slightly the numerical solutions. This is tested using a 3D parallel implementation of the
DGTD method (parallel MPICH Fortran 77 implementation).

4 NUMERICAL RESULTS

We dispose of a three-dimensional parallel implementation of the DGTD method pre-
sented in the previous section. Any subsonic steady flow can be considered, even with
strong flow gradients. However, the flow, given as the output of a non-linear Euler equa-
tions solver, has to be post-processed: average of the flow over tetrahedra must be com-
puted and the non-slip condition must be enforced on physical boundaries. We present
in this section test-cases in two and three space dimensions, in order to validate the
method on benchmark problems, test the method on complex flows and configurations,

8



Marc Bernacki and Serge Piperno

and finally evaluate the performance of the parallel Fortran 77 implementation, based
on the MPICH implementation of MPI. Parallel computations were performed on a 16
node cluster (2GHz-Pentium4 1Gb-RDRAM memory biprocessor each). In this section,
tables give performance results for 64 bit arithmetic computations: Np is the number of
processes for the parallel execution, REAL denotes the total (wall clock) simulation time
and CPU denotes the corresponding total CPU time taken as the maximum of the per
process values. Finally, % CPU denotes the ratio of the total CPU time to the total wall
clock time. This ratio clearly allows an evaluation of the CPU utilization and yields a
metric for parallel efficiency.

4.1 Linear shear flow

We first consider a linearly-sheared flow (u0/c0 = 0.0035y + 0.45) for which it is well-
known that no Kelvin-Helmholtz instability appears. The 200x200 computational domain
is centered at the origin, with slip boundary conditions on the lower and upper boundaries,
and an absorbing boundary condition on left and right boundaries. The results for a
Gaussian pulse at t = 0 obtained for the DGTD method with ( ~WH) or without ( ~WH=0)

the correction source term, or with Bogey’s model ( ~WBBJ) 4 are very similar. This means
that in that case the source term has no strong influence on the solution, although the
influence on the discrete energy F is clearly visible on Figure 1 (before the pulse meets the

absorbing boundary, it grows slightly for ~WH=0, whereas it remains constant for ~WH).

The relative differences between ~WH or ~WBBJ with ~WH=0 (in terms of the L2 of the

 20.5

 21

 21.5

 22

 22.5
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 0  10  20  30  40  50  60  70

F

time

F with H=0
F with source term H

Figure 1: F without or with stabilization source term H.

velocity field) are very close to each other and less than 0.1%. The results obtained with
a periodic acoustic source are also almost identical (see a solution on Figure 2.
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Figure 2: δp at t = 132s in ~WH.

4.2 Unstable shear flow

We consider a similar test-case with an inflection point in the profile u0/c0 = 0.5 +
0.25 tanh(151.51 y), which is known to induce instabilities. A Gaussian source term at
the center of the 2x0.5 domain is used. Solutions obtained with the three models are
shown on Figure 3. An instability appears when no correction in the model is used, and
~WH and ~WBBJ are again very similar (relative difference smaller than 0.5% in L2 norm
of the velocity field).

4.3 Aeroacoustics past a NACA profile

A steady flow with M∞ = 0.5 is computed on a triangular mesh ( 65,580 triangles)
proposed by ONERA. A time-periodic Gaussian source term is used. Instabilities were
observed for this test-case for ~WH=0, near the leading edge. This is not the case for
~WH and ~WBBJ . The relative difference between these last two solutions is not far from
1%, and small differences appear near the trailing edge, where perturbations appear (see
Figure 4).

4.4 Three-dimensional test-cases

We present here some computations of aeroacoustic propagation past a complex geome-
try. We consider the steady flow past a falcon-type geometry. The steady supporting flow
was computed on a 1.31-million element tetrahedral mesh in subsonic regime (M∞ = 0.5)
using a 3D parallel MUSCL-based finite-volume solver 13. The meshed surface of the
aircraft along with contours for the Mach number are shown on Figure 5.
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Figure 3: Contours (same scale)for δp at t = 1s for ~WH=0 (top), ~WH (middle) and ~WBBJ (bottom).

Figure 4: Zoom near the trailing edge for ~WH (up) and ~WBBJ (down) with the same contours of p.
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Figure 5: Meshed surface and surfacic contours of the Mach number of the supporting flow

In a first test-case, an acoustic perturbation is generated via two time-periodic Gaussian
pulses (period of T = 7ms) located inside engines. The numerical simulation of this test-
case without our stabilization revealed unstable (Tollmien-Schlichting-type instabilities).
It was also unstable using the correction proposed by Bogey et al. 4. Surface contours of
‖δ~V ‖ at t = 1.05s are shown on Figure 6 without stabilization (log-scale) and with the
treatment proposed here (linear scale).

In a second test-case, an acoustic perturbation is generated via a single time-periodic
Gaussian pulse (period of T = 250ms) located ahead of the nose of the aircraft. The
stabilization was used and the computations were performed on 16 and 32 processors.
Parallel efficiency and acceleration can be evaluated in Table 1. The surfacic contours of

Table 1: Aeroacoustic propagation of a perturbation : performance results

Np CPU time REAL time % CPU S(Np)
16 90h 104h 87% 1
32 52h 61h 85% 1.7

δp obtained at successive times are shown on Figure 7. The numerical results are globally
in good coherence with expectations. This shows the method is able to lead to highly
demanding aeroacoustic computations and that the parallel implementations is validated
and quite efficient (there is room for improvement on that point). However, accuracy
(measured here with the eye’s norm) is acceptable but probably not high. The contours
are not smooth on many parts of the surface. This could be due to the coarseness of the
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Figure 6: Surface contours of ‖δ~V ‖ at t = 1.05s: without stabilization (left, log-scale) and with stabilizing
source term (right, linear scale)

three-dimensional mesh used for the computations. In some regions of the supporting flow,
the fact that the supporting flow is described in a finite-volume way (i.e. element-wise
constant) might be responsible for such unsmoothness in the results.

5 CONCLUSION AND FURTHER WORKS

The non-dissipative DGTD framework recalled in this paper allowed for the exact
control of a discrete aeroacoustic energy, including in the case of aeroacoustics in a non-
uniform supporting flow. Although linearized Euler equations are not really solved, the
proposition of a source term leading to the stabilization of Kelvin-Helmholtz instabilities
is original and leads to interesting results.

Further works can concern many different aspects. On the modeling side, it is possible
to design models for dealing with natural Kevin-Helmholtz instability, for example by
adding some other source terms. This has to be done in cooperation with physicists.
Anyway, the numerical framework proposed here provides a valuable tool for investigating
this kind of instability in complex flows and geometries. On the numerical side, the overall
accuracy could be enhanced either by considering more-than-linear basis functions (Pk

Lagrange elements with k > 1) or by dealing with a more accurate description of the
supporting flow (currently, it is only P0). Higher-order accuracy in absorbing boundary
conditions and time-scheme should also be seeked for.
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Figure 7: Surface contours for δp (times t = 1s, t = 2s, t = 2.7s, t = 3.5s).
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