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Abstract. We presentin this paper a time-domain Discontinuous Galerkin dissipation-
free methal for the transient solution of the three-dimensionallinearized Euler equations
around a steady-statesolution. In the geneal context of a non-uniform supmrting ow,

we prove, using the well-known symmetrization of Euler equations,that someaeroacoustic
eneigy satis es a balane equation with source term at the continuous level, and that our
numerical framework satis es an equivalent balance equation at the discrete level and
is genuinely dissipation-free. Moreover, there exists a correction term in aeroacustic
variablessuchthat the aeroacoustic enegy is exactly preserve, and therefore the stability
of the schemecan be provel. This leadsto a new ltering of Kelvin-Helmholtzinstabilities.
In the caseof P, Lagrangebasis functions and tetrahadral unstructured meshesa parallel
implementation of the methal has been developd, basal on messagepassing and mesh
partitioning. Three-dimensionalnumerical resultscon rm the theoretical properties of the
methal. They include test-aseswhele Kelvin-Helmholtz instabilities appear and can be
eliminated by addition of the source term.

1 INTR ODUCTION

Aeroacousticsis a domain where numerical simulation meets great expansion. The
minimization of acousticpollutions by aircrafts at landing and take o, or more generally
by aerospaceand terrestrial vehicles,is now an industrial concern,related to more and
more se\ere norms. Di erent approadescoexist under the Computational Aeroacoustics
activity. The most widely usedmethods belongto classicalComputational Fluid Dynam-
ics and consistin solving partial di erential equationsfor the uid, without distinction
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between the supporting (possibly steady-state) ow and acoustic perturbations!. The
equationsmodeling the uid canbe Euler or Navier-Stokes equations,possiblyincluding
extendedmodelslike turbulence, LES techniques, etc®>. One particular di cult y of these
approadesis the di erence in magnitude betweenthe ow and acoustic perturbations,
then requiring very accurate{ and CPU-consuming{ numerical methods.

An alternative has deweloped recerly with approadies consisting in separating the
determination of the supporting steady-state o w and in modeling the generationof noise
(for exampleby providing equivalernt acousticsources),from the propagation of acoustic
perturbations® 4 . For this problem, linearized Euler equationsaround the supporting
ow areto be solved and provide a good description of the propagation of aeroacoustic
perturbations in a smoothly varying heterogeneousind anisotropic medium. This is not
exactly the caseof more simple models basedon Lighthill analogy’ or of the third-order
equation of Lilley’ (a clear description can be found in a more recen referencé). The
noisesourcemodeledor derived from the steady-state o w are then dealt with asacoustic
sourceterms in the linearized Euler equations.

The work presertied hereis dewted to the numerical solution of linearized Euler equa-
tions around steady-state discretized o ws, obtained using a given Euler soher. The
supporting o w considereds always smooth and subsonic,it can be uniform or fully non-
uniform. Sincewe intend to considercomplex geometriesin three spacedimensions,we
considerunstructured tetrahedral spacediscretizations. In this cortext, we proposeatime
domain DiscortinuousGalerkin dissipation-freemethod basedon P, Lagrangeelemerts on
tetrahedra. The method is derived from similar methods deweloped for three-dimensional
time-domain Maxwell equations. We usean elemet-centered formulation with certered
numerical uxes and an explicit leap-frogtime sdieme. This kind of method provides a
dissipation-freeappraximation of propagation equationsand allows for the accurate es-
timation of aeroacousticenergyvariation, which is not possiblewith numerical methods
(nite volumes, discortinuous Galerkin, spectral elemens) basedon upwind numerical
uxes.

More precisely the main results of this paper concernboth the linearized Euler equa-
tions at the cortinuouslevel, and the numericalmethod we propose. They canbe summed
up the following way:

1. for a uniform supporting ow, at the cortinuous level (i.e. before spacediscretiza-
tion), somequadratic energyveri es a balanceequation without sourceterm. This
meansenergyis consened (up to boundaries);

2. in this \uniform supporting ow" case,we are able to prove that our Discortinuous
Galerkin method (with leap-frog time-stheme and certered uxes) introducesno
dissipation even on unstructured simplicial meshegsomediscreteenergyis exactly
consered, or simply non-increasingwhen absorbingboundary conditions are used);
thereforewe claim that we \control energyvariations in the uniform case";
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3. accordingly for a non-uniform supporting ow, at the cortinuous level (i.e. be-
fore spacediscretization), we usethe well-known symmetrization of nonlinear Euler
equations'® to derive an aeroacousticenergywhich veri es somebalanceequation
with sourceterm. Becauseof this unsignedsourceterm, aeroacousticwavescan be
damped or excited by the supporting ow. It is responsiblefor examplefor Kelvin-
Helmholtz instabilities. Theseinstabilities are due to the model (linearized Euler
eqguations),not to the numerical method;

4. in the \non uniform supporting ow" case,we are able to prove that, using an
adapted version of the sameDiscortinuous Galerkin method on unstructured sim-
plicial meshes,some\discrete” energy balance equation with sourceterm is also
veri ed. We claim our method is still non-dissipative. The good point is that we
are able to reproduce theseinstabilities. The bad point is that we cannot damp
them arti cially (like methods basedon upwind uxes, which damp instabilities, in
an uncortrolled way though);

5. we shav nally that there exists a discrete sourceterm sud that energyis ex-
actly consered and the stability of the shemecan be proved. Thereforethe non-
dissipative DGTD method providesan accuratetool for cortrolling phenomendike
Kelvin-Helmholtz instabilities.

2 LINEARIZA TION OF EULER EQUA TIONS

We consider here equations for the propagation of acoustic waves through a steady
smaoth inviscid ow. Therefore, we linearize the three-dimensional Euler equations
around a given steady ow and only take into accourt rst-order perturbation terms.
For a perfectinviscid gas, Euler equationsread:

0 1 0 1 0 1 0 1
u v w
u uz+p uv uw
@B VvV &+ @ uv + @B Vi+p E+@ YA =0 (1)
W uw YA w2+ p
e (e+ pu (e+ pv (e+ pw

where , ¥ = "(u;v;w), e and p denoterespectively the density, the velocity, the volumic
total energyand the pressuregiven by the perfectgaslawp= (  1)(e % kvk?), where

isa xed constart ( > 1).

When the steady supporting o w is uniform, the equationsobtained by linearizing the
Euler equationsare simple, in the sensethat they naturally involve symmetric matrices
and lead to a Friedrich's system (if the intuitiv e consenrative variables are used). This
symmetry also lead naturally energyconsenation properties. Howewer, things are more
complexwhenthe steady supporting ow is not uniform. In that case,the steady ow is
de ned by smoothly varying physical quartities ( o;¥; po). Linearizing straightforwardly

3
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Euler equations(1) yields:

QW +@ AW +@ AW +@ AW =0 (2)
whereW now denotesthe perturbations of consenrative variables(i.e. WT = ( ; v+
Yo ; P 1)+ o¥: v+ kwk® =2)) and the space-arying matricesA?, AJ, and A?
are given in function of ~ = 1, o= =+ kwok?®=2, o=( 2)kVWk?*=2 &= and
the canonicalbasis(&; &,; €,) of R by

0 ; 1
0 € 0
A= @ Tkwok?es (Woe ¥ (Woi&s)ls ~&'wo+w'es & A;s2fxy;zg (3)
o(¥o:€s) 08 ~(¥oi&) ¥ (¥o:6s)

In this equation, the matrices A2, A§’, and A? are not symmetric anymore, and it is very
di cult to deduceany aeroacoustienergybalanceequation. Therefore,we considerother
acoustic variables, derived from the quite classicalsymmetrization of Euler equations.
Assumingthe ow is smooth enough,the changeof variables(; w;e)! ( e—p~ + +1

In £ ;%v; %) transformsEuler equations(1) into a symmetric systemof conseration

laws (i.e. Jacobiansof uxes are symmetric matrices). Accordingly, the linearization
of these symmetrized Euler equationsleadsto more complex aeroacousticequationsfor
perturbations of the new variables,which can be written as

AJ@V +@ AV +@ AV +@ ANV =0 4)
whereV is givenin function of variablesW by V = AJ 'w and
0 1
A= 2@ D15+ W' vy o A A=A s2fxy;zgr (5)

o = o' Yo 6 G=( ")
AS clearly is symmetric and it can be proved that it is de nite positive (and then not
singular). Eq. 4 can also be obtained simply by replacingW by ASV in Eqg. 2 (and by
noting that @Ay = 0). Finally, the readercan alsoched that the symmetric matrices A
(s 2 fx;y;zg) are given by

o 0 ‘e (Vo:€s)
A= (voe) A+ =@ &'t w'e  (oe)Vot o&s A
(Woi&s) (Vo) Wo+ o & 2 o(vo'€s)

. . _ lt o1 lt 0 .
Then, the volumic aeroacousticenergyEdened by E= 3 WAy "W 5 VARV veries
the following balanceequation with sourceterm:

(
Fs:tvp;gﬁ; s2 fx;y;zg: i ©)

GE+ dVF = Siwith o 1ty gD + @A) + @A) V:

4
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Thus the aeroacousticenergyis not consered and the variations in the steady ow con-

sideredcan damp or amplify aeroacousticwaves, unlessthe sourceterm vanishes(which

is the casefor a uniform o w for example). In the sequel,we shall mainly discretizethe

consenrative form (2), but we shall needthe equivalert symmetric form (4) for discussions
concerningenergyconsenation and stability.

3 A DISCONTINUOUS  GALERKIN TIME-DOMAIN METHOD

Discortinuous Galerkin methods have beenwidely usedwith succesgor the numerical
simulation of acousticor electromagneticwave propagationin the time domain® . The
very sametype of methods can be usedfor the problemsconsideredhere,i.e. the propa-
gation of aeroacoustiovavesthrough a non-uniform ow?*2. In this section,we presen the
DGTD method we usefor the model equations(2). We recall the numerical properties
of the spacediscretization. Then we introducethe leap-frogtime sdhemeand give some
details on propertiesrelated to energyconseration and stability.

In the whole paper, we assumewe dispose of a partition of a polyhedral domain
(whose boundary @ is the union of physical boundaries of objects @ P"s and of the
far eld articial boundary @ ! ). is partitioned into a nite number of polyhedra
(each one having a nite number of faces). For ead polyhedron T;, called "control vol-
ume" or "cell", V; denotesits volume. We call face betweentwo cortrol volumestheir
intersection, wheneer it is a polyhedral surface. The unior-of all facesF is partitioned
into intern‘r@\l facesF"' = F=@ physical facesF ph-Vl-s = F @ "™s and absorbingfaces
Fas = F ~ @?'. For ead internal faceay = T, Ty, we denoteby Sy the measure
of ax and by Ry the unitary normal, oriented from T; towards Tx. The samede nitions
are extendedto boundary faces,the index k correspnding to a ctitious cell outside the
domain. Finally, we denoteby V; the set of indices of the cortrol volumesneighboring a
given corgrol volumeT; (having a facein common). We alsode ne the perimeter P; of T;
By Pi= v, Sk. We recall the following geometricalproperty for all cortrol volumes:

kav, SikRik = 0.

Following the generalprinciple of discortinuous Galerkin nite elemen methods, the
unknown eld inside eat cortrol volume is seeled for as a linear combination of local
basisvector elds ~j; 1 | d (generatingthe local spaceP;) and the appraximate
eld is allowed to be fully discoriinuous acrosselemen boundaries. Thus, a numerical
ux function hasto be de ned to appraximate uxes at cortrol volumesinterfaces,where
the approximate solution is discortinuous.

This cortext is quite general. Actual implemenations of the method have beencon-
sideredonly on tetrahedral mesheswherecortrol volumesare the tetrahedra themseles.
We shall only considerconstart (Pg) or linear (P1) appraximations inside tetrahedra.
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3.1 Time and space discretizations

We only consider here the most general caseof aeroacousticwave propagation in a
non-uniform steady ow. Also, in order to limit the amourt of computations, we restrict
our study to piecewiseconstart matrices A2 (s 2 fx;y;zg) givenin Eq. (3). For eath
cortrol volumeT;, for s 2 fx;y; zg, we denoteby AL an appraximate for the averagevalue
of AY over T;. Dot-multiplying Eq. (2) by any givenvector eld -, integrating over T; and
integrating by parts yields

1 ~ 0 1

X
@~ AA w ~ @ nsAW A - (7)
s2f x;y;zg @ s2f x;y;zg

0
Z Z

X
_av_“ g

Ti @ Ti

Inside volume integrals over T;, we replacethe eld W by the approximate eld W; and
the matrices A2 by their respective averagevaluesAL. For boundary integrals over @,
W is discortinuous, and we de ne totally certered numerical uxes, i.e.:

h i
8|, 8k 2 Vi; (nikxAg + nikyA8+ niszg)W ' ' % P:kW| + P:(ka ; (8)
. . . . Jaik
with P:k = nikxA;( + nikyA'y + nikZA'Z; P:T( = nikXA)'j + nikyA§ + nikZA'z‘:

Concerningthe time discretization, we usea three-le\el leap-frogsdheme. The unknowns
W ; are appraximated at integer time-stations t" = n t. Assumingwe disposeof W !
and W, the unknovns W i””l are seeled for in P; sud that, 8~ 2 P;,

Z z z .
,owrtownt X o X = PLWM+ Piw
' i i — t@~A|SWir1 ' ik i 5 ik k:

: 2t :
T Ti g2t X;y;zg k2v; ik

(9)

Again, the time schemeabove is almostexplicit. Ead time steponly requiresthe inversion
of local symmetric positive de nite matricesof size(d; d;). In the particular casewhere
P; is a completelinear (P;) represemation, these20 20 matrices are indeed made of 5
4 4 diagonalblocks (which are equalto the classicalP,; massmatrix).

3.2 Boundary conditions

Boundary conditions are dealt with in a weak sense. For the physical boundary, we
consideronly a slip condition, which is set on both the steady ow and the acoustic
perturbations. This meansthat we assumethat for any slip boundary faceay belonging
to the cortrol volume T;, the steady solution of Euler equationsveri es a slip condition
at the discretelewel, i.e. nyx ¥° = 0. For the acoustic perturbations, we use a mirror
ctitious state W in the computation of the boundary ux givenin Eq. (9). We take

k= i, Pk= p,and v = v 2Rk ¥)Ak (which implies(v ) #8x =0
and ViR = ViAK).
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For an absorbingboundary face ay, upwinding is usedto selectoutgoing wavesonly.
Before discretization in time, classicalupwinding leadsto a boundary ux Fiy given by
Fkx = (Pik)+ W, where for any diagonalizablematrix Q = S DS with D diagonal,
Q" = (Q+jQj)=2 and terms of the diagonalmatrix jDj arethe moduli of the eigervalues.
This generalidea leadsto Pk W = jP| jW ;. Howeer, for this intuitiv e numerical ux,
it is very dicult to prove that the resulting time-scheme s stable and that energyis
actually sert in the exterior domain. We then cgonsiderthe numerical ux basedon the

. " =i - 1 Mo - lwn lywn#t <~
following ctitious state: Pf W[ = "Ay Ay Pj Ay Ay ————, where Ajisthe
positive squareroot of the symmetric de nite positive matrix Al. Indeed, this expression
derives from the intuitiv e upwind ux for the symmetrized equations (4). It leadsto
time-stchemewhich is locally implicit near absorbingboundaries(i.e. independer linear
systemsare to be solved inside elemeits having at least one absorbingface,at ead time
step). It leadsto a globally second-ordettime-accurate sheme. A lessaccurate explicit

versionis also available®?. It takesthe form P W = pAio pA_JO 1P}kpA_JO IOA_‘0 'wr L

3.3 Energy balance and stabilit y

In order to investigate stability, we de ne a discreteaeroacousticenergyF" by:

Z
o= 0T ey twr e twiea) g
2 i 0 i
i T 7
t X t -
+— Ay Wt My Ay S ow! P+ewtt
ajk 2F abs Bk
with My = TAL PAL P Pai P Pai Pai e PAi 2 PAL one can shaw that the

matrices M, are symmetric and positive. One can shov that the variation through one
time step of the aeroacousticenergyis given by:

Z
t X . i
Fn+1 Fn - - tVIn(P:(k P:k)VE-'-l + tvin-'-l (P:T( P:k)vE
ajk 2F int 8ik
t X t
- v te Mt My v et (10)
aj 2F abs Ak

where we have usedthe auxiliary variablesv! A} lWi”; 8i; 8n. The rst termis a
discreteversionof the sourceterm appearingin Eq. (6). The secondterm is negative and
shows that our absorbingboundary conditions actually absorbsenergy This results also
shaws that the slip boundary condition hasno in uence on the global energybalance.
In order to prove stability, one can showv that F" is a quadratic positive de nite form
of numerical unknowns (W *; W ") under someCFL-like su cien t stability condition on
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the time-step t:

. 2V,
8i; 8k2Vi; t(2i i+ ik k)< ?' (11)
where j and i aredimensionlessegularity coe cien ts dependingof basisfunctions and
elemen aspectratio, ; = jug + jvpj + jwgj + 3¢y, and i = jv, fAik] + ¢, for a boundary

faceand 2 = sup (v, Axj+ &))° AKAL T vk mj+ s ? ALAK ' for an
internal face( heredenotesthe spectral radius of a matrix).

In the caseof a uniform ow, we have P}, = P&. Thus the aeroacousticenergy is
non-increasing(and exactly consered if no absorbingboundary is presen, which shows
the shemeis geruinely non-di usiv e) and the sdhemeis stable under a CFL-type stability
condition depending on the sizeof elemeits and sup (kv k + c?).

3.4 Addition of a stabilization term

We have seenthe energyF" is not exactly consered when the supporting ow is not
uniform. Howewer, onecanshow that it is indeedexactly consered (away from absorbing
boundary conditions) if a discretesourceterm H is addedin ead elemen sud that:

Z 4
. 1 X , i 1
H= =7 ~j Pk Pk Ag WL
Ti k2V; aik

This property is not sointuitiv e, sincethe quadratic nature of the energydoesnot imply
sud a sourceterm existsin general. One can notice that this sourceterm is related to
internal facesin the mesh,and that it vanishesif the ow is uniform or locally uniform.
With this additional sourceterm, the energyis consered and therefore all numerical
unknowns remain bounded.

Howewer, one must have in mind that someinstabilities should naturally occur when
linearized Euler equationsare considered.The addition of this sourceterm has modi ed
the structure of aeroacousticequations, since Kelvin-Helmholtz instabilities for example
can no more appear. Of course,one can wonder if this correction term perturbs only
slightly the numerical solutions. This is tested using a 3D parallel implemertation of the
DGTD method (parallel MPICH Fortran 77 implemerntation).

4 NUMERICAL RESULTS

We disposeof a three-dimensionalparallel implemertation of the DGTD method pre-
serted in the previous section. Any subsonicsteady ow can be considered,even with
strong ow gradierts. Howeer, the ow, given asthe output of a non-linear Euler equa-
tions solver, hasto be post-processed:averageof the ow over tetrahedra must be com-
puted and the non-slip condition must be enforcedon physical boundaries. We present
in this section test-casesin two and three spacedimensions,in order to validate the
method on bendmark problems, test the method on complex ows and con gurations,
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and nally ewaluate the performanceof the parallel Fortran 77 implemenation, based
on the MPICH implemertation of MPI. Parallel computations were performedon a 16
node cluster (2GHz-Pertium4 1Gb-RDRAM memory biprocessoread). In this section,
tables give performanceresults for 64 bit arithmetic computations: N, is the number of
processedor the parallel execution,REAL denotesthe total (wall clock) simulation time
and CPU denotesthe correspnding total CPU time taken as the maximum of the per
processvalues. Finally, % CPU denotesthe ratio of the total CPU time to the total wall
clock time. This ratio clearly allows an ewaluation of the CPU utilization and yields a
metric for parallel e ciency.

4.1 Linear shear ow

We rst considera linearly-sheared ow (ug=¢ = 0:003% + 0:45) for which it is well-
known that no Kelvin-Helmholtz instability appears. The 200x200computational domain
is certered at the origin, with slip boundary conditionson the lower and upper boundaries,
and an absorbing boundary condition on left and right boundaries. The results for a
Gaussianpulseat t = 0 obtained for the DGTD method with (W ) or without (W =)
the correction sourceterm, or with Bogey'smodel (W gz ;) # are very similar. This means
that in that casethe sourceterm has no strong in uence on the solution, although the
in uence onthe discreteenergyF is clearly visible on Figure 1 (beforethe pulsemeetsthe
absorbingboundary, it grows slightly for W o, whereasit remains constarnt for W ).
The relative di erences between W or Wggy with W -, (in terms of the L? of the

235 r . . . . .
F with H=0 —
F with source term H -...-
23}

225}

215}

21¢

20.5 - - - . - -
0 10 20 304,40 50 60 70

Figure 1: F without or with stabilization sourceterm H.

velocity eld) are very closeto eat other and lessthan 0.1%. The results obtained with
a periodic acousticsourceare also almost identical (seea solution on Figure 2.

9
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Figure 2: patt= 132%in Wy.
4.2 Unstable shear ow

We considera similar test-casewith an in ection point in the prole ug=g = 0.5+
0:25tanh(15151 y), which is known to induce instabilities. A Gaussiansourceterm at
the certer of the 2x0.5 domain is used. Solutions obtained with the three models are
shavn on Figure 3. An instability appearswhen no correctionin the model is used,and
W and W zg; are again very similar (relative di erence smallerthan 0.5%in L? norm
of the velocity eld).

4.3 Aeroacoustics past a NA CA prole

A steady ow with M; = 0:5 is computed on a triangular mesh( 65,580triangles)
proposedby ONERA. A time-periodic Gaussiansourceterm is used. Instabilities were
obsened for this test-casefor W -9, near the leading edge. This is not the casefor
W4 and W gg;. The relative di erence betweentheselast two solutionsis not far from
1%, and small di erences appear near the trailing edge,where perturbations appear (see
Figure 4).

4.4 Three-dimensional test-cases

We presen heresomecomputationsof aeroacoustiqoropagationpast a complexgeome-
try. We considerthe steady o w past a falcon-type geometry The steadysupporting ow
was computedon a 1.31-million elemen tetrahedral meshin subsonicregime(M; = 0:5)
using a 3D parallel MUSCL-based nite-v olume soler 3. The meshedsurface of the
aircraft alongwith cortours for the Mach number are shovn on Figure 5.

10
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Figure 3: Contours (samescale)for p at t = 1s for W - (top), Wy (middle) and W g ; (bottom).

Figure 4. Zoom near the trailing edgefor Wy (up) and W gg; (down) with the samecontours of p.

11
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Figure 5: Meshedsurfaceand surfacic contours of the Mach number of the supporting ow

In a rst test-casean acousticperturbation is generatedvia two time-periodic Gaussian
pulses(period of T = 7ms) located inside engines.The numerical simulation of this test-
casewithout our stabilization revealedunstable (Tollmien-Sdilichting-type instabilities).
It was alsounstable using the correction proposedby Bogeyet al. 4. Surfacecortours of
k Vk at t = 1:05s are shavn on Figure 6 without stabilization (log-scale)and with the
treatment proposedhere (linear scale).

In a secondtest-case,an acoustic perturbation is generatedvia a single time-periodic
Gaussianpulse (period of T = 250ms) located ahead of the noseof the aircraft. The
stabilization was used and the computations were performed on 16 and 32 processors.
Parallel e ciency and accelerationcan be evaluated in Table 1. The surfacic contours of

Table 1: Aeroacoustic propagation of a perturbation : performanceresults

N, CPUtime REAL time % CPU S(N)
16 90h 104h 87% 1
32 52h 61h 85% 1.7

p obtained at successi@ times are shovn on Figure 7. The numerical results are globally
in good coherencewith expectations. This shavs the method is able to lead to highly
demandingaeroacousticcomputations and that the parallel implemertations is validated
and quite e cient (there is room for improvemer on that point). Howewer, accuracy
(measuredhere with the eye's norm) is acceptablebut probably not high. The cortours
are not smaoth on many parts of the surface. This could be due to the coarsenessf the
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