Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Evaluation of an OpenMP Parallelization of Lucas-Kanade on a NUMA-Manycore

Abstract : Lucas-Kanade algorithm is a well-known optical flow estimator widely used in image processing for motion detection and object tracking. As a typical image processing algorithm, the procedure is a series of convolution masks followed by 22 linear systems for the optical flow vectors. Since we are dealing with a stencil computation for each stage of the algorithm, the overhead from memory accesses is expected to stand as a serious scalability bottleneck, especially on a NUMA manycore configuration. The objective of this study is therefore to investigate an OpenMP parallelization of Lucas-kanade algorithm on a NUMA manycore, including the performance impact of NUMA-aware settings at runtime. Experimental results on a dual-socket INTEL Broadwell-E/EP is provided together with the corresponding technical discussions
Type de document :
Communication dans un congrès
Liste complète des métadonnées
Contributeur : Claire Medrala <>
Soumis le : mercredi 22 août 2018 - 14:45:48
Dernière modification le : mardi 20 octobre 2020 - 19:24:06


  • HAL Id : hal-01859701, version 1


Olfa Haggui, Claude Tadonki, Fatma Sayadi, Ouni Bouraoui. Evaluation of an OpenMP Parallelization of Lucas-Kanade on a NUMA-Manycore. 9th Workshop on Applications for Multi-Core Architectures (WAMCA 2018), Sep 2018, Lyon, France. ⟨hal-01859701⟩



Consultations de la notice