A. Becker, P. Finger, A. Meyer-christoffer, B. Rudolf, K. Schamm et al., A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901???present, Earth System Science Data, vol.5, issue.1, pp.71-99, 2013.
DOI : 10.5676/DWD_GPCC/FG_M_100

P. E. Bett, A. A. Scaife, C. Li, C. Hewitt, N. Golding et al., Seasonal forecasts of the summer www.adv-sci-res, Adv. Sci. Res, vol.15, issue.15, pp.191-205, 2018.

A. Troccoli, Creating a proof-of-concept climate service 2016 Yangtze River basin rainfall, Adv. Atmos. Sci., in press, 2018.

P. E. Bett, H. Thornton, and A. Troccoli, Skill assessment of energy-relevant climate variables in a selection of seasonal forecast models, p.3, 2018.

H. C. Bloomfield, D. J. Brayshaw, L. C. Shaffrey, P. J. Coker, T. et al., Quantifying the increasing sensitivity of power systems to climate variability, Environmental Research Letters, vol.11, issue.12, pp.1748-93261748, 2016.
DOI : 10.1088/1748-9326/11/12/124025

S. Bojinski, M. Verstraete, T. C. Peterson, C. Richter, A. Simmons et al., The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy, Bulletin of the American Meteorological Society, vol.95, issue.9, pp.1431-1443, 2014.
DOI : 10.1175/BAMS-D-13-00047.1

D. J. Brayshaw, A. Troccoli, R. Fordham, and J. And-methven, The impact of large scale atmospheric circulation patterns on wind power generation and its potential predictability: A case study over the UK, Renewable Energy, vol.36, issue.8, pp.2087-2096, 2011.
DOI : 10.1016/j.renene.2011.01.025

B. Soares, M. Dessai, and S. , Exploring the use of seasonal climate forecasts in Europe through expert elicitation, Climate Risk Management, vol.10, pp.8-16, 2015.
DOI : 10.1016/j.crm.2015.07.001

C. Buontempo, A. Brookshaw, A. Arribas, and K. Mylne, Multi-Scale Projections Of Weather And Climate At The Uk Met Office, pp.39-50, 2010.
DOI : 10.1007/978-90-481-3692-6_3

, a programme operated by the European Centre for Medium-Range Weather Forecast (ECMWF) on behalf of the European Union, available at: https://climate.copernicus, C3S: Copernicus Climate Change Service (C3S), p.15, 2018.

, The ECEM Demonstrator, C3S ECEM: Copernicus Climate Change Service (C3S) European Climatic Energy Mixes (ECEM), p.15, 2018.

R. T. Clark, P. Bett, H. Thornton, and A. Scaife, Skilful seasonal predictions for the European energy industry, Environmental Research Letters, vol.12, issue.2, p.24002, 2017.
DOI : 10.1088/1748-9326/aa57ab

G. P. Compo, J. S. Whitaker, P. D. Sardeshmukh, N. Matsui, R. J. Allan et al., The Twentieth Century Reanalysis Project, Quarterly Journal of the Royal Meteorological Society, vol.25, issue.654, pp.1-28, 2011.
DOI : 10.1002/joc.1166

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli et al., The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, vol.91, issue.656, pp.553-597, 2011.
DOI : 10.1175/2008MWR2781.1

D. Felice, M. Alessandri, A. Catalano, and F. , Seasonal climate forecasts for medium-term electricity demand forecasting, Applied Energy, vol.137, pp.435-444, 2015.
DOI : 10.1016/j.apenergy.2014.10.030

D. Felice, M. Dubus, L. Suckling, E. Troccoli, and A. , The impact of the North Atlantic Oscillation on European hydropower generation, Appl. Energ., submitted, preprint available at: https://eartharxiv, p.3, 2018.

L. Dekens, S. Parey, M. Grandjacques, and D. Dacunha-castelle, Multivariate distribution correction of climate model outputs: A generalization of quantile mapping approaches, Environmetrics, vol.111, issue.3-4, pp.1-19, 2017.
DOI : 10.1007/s10584-011-0167-9

L. Dubus, M. De-felice, S. Claudel, Y. Saint-drenan, A. Troccoli et al., The ECEM climate service: how reanalysis can help energy planning, EMS Annual Meeting 2017, pp.4-8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01583139

L. Dubus, S. Claudel, M. De-felice, Y. Saint-drenan, and A. Troccoli, A new dataset of power demand and supply over Europe, in preparation, 2018. e-Highway2050 (e-HW2050): Europe's future secure and sustainable electricity infrastructure, Final project report, p.25, 2015.

S. Fan and R. J. Hyndman, Short-Term Load Forecasting Based on a Semi-Parametric Additive Model, IEEE Transactions on Power Systems, vol.27, issue.1, pp.134-141, 2012.
DOI : 10.1109/TPWRS.2011.2162082

D. Frankel and A. Wagner, Battery storage: The next disruptive technology in the power sector, A McKinsey & Company publication, available at: https://www.mckinsey.com/business- functions/sustainability-and-resource-productivity/ourinsights/battery-storage-the-next-disruptive-technology-inthe-power-sector (last access, pp.25-2017, 2018.

G. Aparicio, I. Zucker, A. Careri, F. Monforti, F. Huld et al., EMHIRES dataset, Part I: Wind power generation , JRC Science for policy report JRC103442, 2016.

Y. Goude, R. Nedellec, and N. Kong, Local Short and Middle Term Electricity Load Forecasting With Semi-Parametric Additive Models, IEEE Transactions on Smart Grid, vol.5, issue.1, pp.440-446, 2013.
DOI : 10.1109/TSG.2013.2278425

I. Harris, P. D. Jones, T. J. Osborn, and D. H. Lister, Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset, International Journal of Climatology, vol.15, issue.12, pp.623-642, 2014.
DOI : 10.1002/joc.3370150207

T. Hastie and R. Tibshirani, Generalized additive models, 1990.

M. R. Haylock, N. Hofstra, A. M. Klein-tank, E. J. Klok, P. D. Jones et al., A European daily high-resolution gridded dataset of surface temperature and precipitation, J. Geophys. Res, vol.113, 2008.

S. Jerez, I. Tobin, R. Vautard, J. P. Montávez, J. M. López-romero et al., The impact of climate change on photovoltaic power generation in Europe, Nature Communications, vol.118, issue.1, p.10014, 2015.
DOI : 10.1016/j.energy.2006.12.006

URL : https://hal.archives-ouvertes.fr/ineris-01854134

I. T. Jolliffe and D. B. Stephenson, Forecast Verification: A Practitioner's Guide in Atmospheric Science, 2012.
DOI : 10.1002/9781119960003

P. D. Jones, C. Harpham, A. Troccoli, B. Gschwind, T. Ranchin et al., Using ERA-Interim reanalysis for creating datasets of??energy-relevant climate variables, Earth System Science Data, vol.9, issue.2, pp.471-495, 2017.
DOI : 10.2166/nh.2010.004

URL : https://hal.archives-ouvertes.fr/hal-01567493

S. Kobayashi, Y. Ota, Y. Harada, A. Ebita, M. Moriya et al., The JRA-55 Reanalysis: General Specifications and Basic Characteristics, Journal of the Meteorological Society of Japan. Ser. II, vol.93, issue.1, pp.5-482015, 2015.
DOI : 10.2151/jmsj.2015-001

C. Maclachlan, A. Arribas, K. A. Peterson, A. Maidens, D. Fereday et al., Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system, Quarterly Journal of the Royal Meteorological Society, vol.31, issue.689, pp.1072-1084, 2015.
DOI : 10.1002/joc.2103

URL : https://hal.archives-ouvertes.fr/hal-01234071

J. D. Mackay, C. R. Jackson, A. Brookshaw, A. A. Scaife, J. Cook et al., Seasonal forecasting of groundwater levels in principal aquifers of the United Kingdom, Journal of Hydrology, vol.530, pp.815-828, 2015.
DOI : 10.1016/j.jhydrol.2015.10.018

F. Molteni, T. Stockdale, M. Balmaseda, G. Balsamo, R. Buizza et al., The new ECMWF seasonal forecast system (system 4), ECMWF Technical Memorandum 656, p.25, 2011.

R. Nedellec, J. Cugliari, and Y. Goude, GEFCom2012: Electric load forecasting and backcasting with semi-parametric models, International Journal of Forecasting, vol.30, issue.2, pp.375-381, 2014.
DOI : 10.1016/j.ijforecast.2013.07.004

E. J. Palin, A. A. Scaife, E. Wallace, E. C. Pope, A. Arribas et al., Skillful Seasonal Forecasts of Winter Disruption to the U.K. Transport System, Journal of Applied Meteorology and Climatology, vol.55, issue.2, pp.325-344, 2016.
DOI : 10.1175/JAMC-D-15-0102.1

S. Pfenninger and I. Staffell, The increasing impact of weather on electricity supply and demand, Energy, pp.65-78, 2018.

A. Pierrot and Y. Goude, Short-Term Electricity Load Forecasting with Generalized Additive Models, Proceedings of ISAP power, pp.593-600, 2011.

, REN21 Secretariat ), available at: http://www.ren21.net/gsr-2016, REN21: Renewables 2016 Global Status Report, p.15, 2016.

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister et al., MERRA: NASA???s Modern-Era Retrospective Analysis for Research and Applications, Journal of Climate, vol.24, issue.14, pp.3624-3648, 2011.
DOI : 10.1175/JCLI-D-11-00015.1

Y. Saint-drenan, S. Bofinger, R. Fritz, S. Vogt, G. Good et al., An empirical approach to parameterizing photovoltaic plants for power forecasting and simulation, Solar Energy, vol.120, pp.479-493, 2015.
DOI : 10.1016/j.solener.2015.07.024

Y. Saint-drenan, G. H. Good, and M. Braun, A probabilistic approach to the estimation of regional photovoltaic power production, Solar Energy, vol.147, pp.257-276, 2017.
DOI : 10.1016/j.solener.2017.03.007

URL : https://hal.archives-ouvertes.fr/hal-01506551

Y. Saint-drenan, L. Wald, T. Ranchin, L. Dubus, and A. Troccoli, An approach for the estimation of the aggregated photovoltaic power generated in several European countries from meteorological data, Advances in Science and Research, vol.15, pp.51-62, 2018.
DOI : 10.1109/TSG.2016.2533164

URL : https://hal.archives-ouvertes.fr/hal-01782565

V. Silva and A. Burtin, Technical and Economic Analysis of the European System with 60 % RES, EDF Technical Report , available at: https://www.edf.fr/sites, p.3, 2015.

I. Staffel and S. Pfenninger, Using bias-corrected reanalysis to simulate current and future wind power output, Energy, pp.1224-123, 2016.

C. Svensson, A. Brookshaw, A. A. Scaife, V. A. Bell, J. D. Mackay et al., Long-range forecasts of UK winter hydrology, Environmental Research Letters, vol.10, issue.6, pp.640061748-9326064006, 2015.
DOI : 10.1088/1748-9326/10/6/064006

H. E. Thornton, B. J. Hoskins, and A. A. Scaife, The role of temperature in the variability and extremes of electricity and gas demand in Great Britain, Environmental Research Letters, vol.11, issue.11, pp.1748-9326, 2016.
DOI : 10.1088/1748-9326/11/11/114015

A. Troccoli, Seasonal climate forecasting, Meteorological Applications, vol.25, issue.22, pp.251-268, 2010.
DOI : 10.1029/GM134p0vii

M. T. Van-vliet, D. Wiberg, S. Leduc, R. , and K. , Power-generation system vulnerability and adaptation to changes in climate and water??resources, Nature Climate Change, vol.15, issue.4, pp.375-380, 2016.
DOI : 10.2166/wp.2012.018

C. Viel, A. Beaulant, J. Soubeyroux, and J. And-céron, How seasonal forecast could help a decision maker: an example of climate service for water resource management, Advances in Science and Research, vol.13, pp.51-55, 2016.
DOI : 10.5194/hess-16-201-2012

A. Voldoire, E. Sanchez-gomez, D. Salas-y-mélia, B. Decharme, C. Cassou et al., The CNRM-CM5.1 global climate model: description and basic evaluation, The CNRM-CM5.1 global climate model: Description and basic evaluation, pp.2091-2121, 2013.
DOI : 10.1175/BAMS-88-4-527

URL : https://hal.archives-ouvertes.fr/hal-00833024

G. P. Weedon, G. Balsamo, N. Bellouin, S. Gomes, M. J. Best et al., The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resources Research, vol.12, issue.D20, pp.7505-7514, 2014.
DOI : 10.1175/2011JHM1369.1

A. Weisheimer and T. N. Palmer, On the reliability of seasonal climate forecasts, Journal of The Royal Society Interface, vol.89, issue.6073, 2014.
DOI : 10.1175/BAMS-89-4-459

D. S. Wilks, Chapter 8 ? Forecast Verification, International Geophysics, pp.301-394, 2011.

S. N. Wood, Generalized Additive Models: An Introduction with, 2006.