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Abstract

In this study, we investigate grain growth within pure olivine systems through

numerical simulations. The level set (LS) approach within a finite element

(FE) context enables modeling 3D microstructural evolutions such as grain

growth. As this phenomenon is inherently a 3D mechanism, the comparison

between 2D and 3D models shows differences despite the use of 2D/3D trans-

formation tools. The 2D level set approach is then compared with 2D models

of grain growth performed with the ELLE software 1. Both approaches give

consistent results. Our results confirm the rapid annealing of fine grained

structures in pure olivine aggregates at temperatures of 1473 and 1573K.

Comparison with previously published experimental results yields an esti-

mate of the activation energy at 171−180 kJ·mol-1 for olivine grain boundary

mobility.

1https://www.elle.ws
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1. Introduction

Microstructures are parts of the memory of rocks and the knowledge of

thermal and/or mechanical loading that led to their formation can be used

to predict their future behaviour.

Indeed, it is well known that rheological properties of rocks (and in general of

crystalline materials) are closely related to their microstructures, because the

latter influences dominant creep mechanisms. For example, strain localiza-

tion in ductile mantle shear-zones may be controlled by lithospheric mantle

microstructures inherited from prior deformations [1]. In fact, it has been

shown that lithospheric mantle weak zones primarily control tectonic pro-

cess such as strain localization at plate boundaries [2]. The microstructure

involves a variety of parameters (grain size, distribution of mineral phases,

lattice orientations, etc.). As a result, several mechanisms potentially able to

weaken mantle rocks have been suggested including grain size reduction [1],

phase transformations [3], and the development of lattice preferred orienta-

tion [4]. Even if the combined role of these mechanisms in the weakening

is likely, the well known association of ductile shear zones with grain size

reduction suggests this process is one of the most important [5].

In naturally deformed mantle rocks, a switch from grain size insensitive (GSI)

to grain size sensitive (GSS) creep can occur by decreasing grain size below a

certain critical size depending on several conditions (e.g. stress, strain rate,

temperature) [5]. Theoretically in GSS creep regimes, the strain rate is re-
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lated to the inverse of grain size [6]. Experiments show that olivine rocks

weaken considerably with decreasing grain size [7] initiating or enhancing

strain localization at zones of low grain size. After localization priming, a

positive feedback between strain weakening and strain localization (by the

coexistence of grain reduction and GSS creep) permits the development of

permanent weak plate boundaries [1, 8].

Dormant plate boundaries (defined as long lived lithospheric weak zones at

geological time scale) are interpreted to be ancient deformation zones (such

as suture zones). By considering the decrease of grain size as the most rel-

evant mechanism of rock weakening, the superposition of dormant plates

boundaries with zones where deformation has involved dynamic recrystal-

lization (and reduced peridotite grain size) can be explained [1]. Geological

record evidences that over period of about 250 Myr, a full orogenic cycle

can take place, reactivating dormant plate boundaries [9], which means that

grain size still remains small enough and enables deformation by GSS creep.

Grain growth kinetics in peridotites (and especially in olivine) has already

been explored by experimental [10, 11, 12] and numerical [13, 14] approaches.

It has been shown that mantle lithospheric temperatures (i.e. 900-1600 K)

may allow efficient grain growth, which would result in a rapid erasing of

fine-grained weak zones. In this paper, we study the grain boundary migra-

tion (GBM) and its effect for microstructure evolutions within a pure olivine

system using numerical simulations.

A large variety of methods can be used to compute numerical microstruc-

ture evolution, including grain growth. They can be divided in two main
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categories :

• mean field models, which describe microstructure evolution through

homogenized system characteristics (e.g. mean grain size, grain size

distribution, mean stored energy, Smith-Zener limit grain size).

• Full field models, which describe the system topology and simulate its

evolution.

Mean field models can be based either on phenomenological observations, or

on theoretical (such as thermodynamical) considerations, or both. More re-

cently, in the metallurgy community, some mean field models obtained from

full field simulations have been proposed [15]. Even if these models enable

large scale computations with low computational cost, their predictions are

only suitable in the range determined by the corresponding experiments, or

in combination with full field models, which will help to calibrate them. An-

other drawback is related to their limitation to predict local phenomena such

as abnormal grain-growth.

Several full field modeling techniques have been developed in order to sim-

ulate microstructure evolutions in rocks. Hereafter a simple classification of

these methods is proposed.

- Stochastic methods such as Monte Carlo Potts model [13] consist of voxel-

based grain shape description, where each lattice site in a grain is given

the same ”spin”, and microstructure evolution is computed according to the

probability for a site to change its spin. Although these methods have high

scalability and low computational costs, a precise calculation of the mean cur-

vature calculation needed to model grain growth is not straightforward with
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a voxelized microstructure. Another issue inherent to Monte Carlo methods

is to perform accurate scaling between the Monte Carlo step and the physical

time step. Furthermore, capturing different physical mechanisms through the

same numerical scheme tends to be extremely complicated since it is difficult

to accurately control the change probability change for each mechanism.

- Front-tracking methods [16] are deterministic approaches and are based

on the explicit description of interfaces. In 2D, grain boundaries are de-

scribed by nodes connected by segments and the microstructure evolution is

computed by applying evolution equations to either nodes or segments. Ad-

vantages of tracking methods are the ease of computing interface properties

(such as mean curvature, normal) and reasonable numerical cost. However,

topological events such as grain shrinkage are difficult to manage from a nu-

merical point of view, and become really problematic in 3D. Moreover, intra-

granular fields, such as stored energy gradient, cannot be described without

the use of a secondary mesh describing the grain interiors. Nonetheless the

front-tracking approach is well suited for modeling grain growth. A front

tracking method is implemented within the microstructural modeling plat-

form ELLE [17] (https://www.elle.ws), a now classical tool for modeling rock

microstructural evolution in the state of the art.

- Finally, grain growth can also be modelled by using an implicit description

of interfaces, which is done either in the phase field method [18], or in the

level set method [19], and permits to avoid the tracking of interfaces and

the issue of handling topological events. The latter is the one chosen for

this work. The numerical approach presented in [20, 21, 22, 19] is used to

describe microstructural evolutions of materials (essentially metals) during
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industrial processes. This approach deals with a LS description of interfaces

in a FE formulation.

One of the aims of the present work is to give a review of the existing

full field modeling techniques developed in order to compute microstructural

evolution of rocks at the mesoscale (i.e. grain-scale). In this context, we will

focus on the grain growth phenomenon which will be initially analyzed in a

physical point of view. Then, different numerical implementation techniques

of the GBM mechanism will be presented.

We also test, in 2D and 3D, the adaptability of the LS formulation for non-

metal materials such as pure olivine system considering only the grain growth

mechanism without deformation. The 2D results will be compared with

those obtained within the ELLE’s software. Our results also bring reflex-

ion elements in the geological context of perennial weak zones preservation

described above.

2. The grain growth phenomenon and its numerical modelisation

2.1. Grain boundary migration

Grain growth occurs in polycrystalline materials by grain boundaries mi-

gration (GBM) through the microstructure leading to the reduction of Gibbs

free energy. Driving forces for GBM can derivate from different factors as

capillarity, difference of stored energy (by lattice defects) between grains or

solid-solid phase transformations, in the case of multiphase material [16].

Generally the velocity (~v) of a boundary can be expressed as [23] :

~v = MF~n, (1)
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where M is the grain boundary mobility, F the driving force per unit area

and ~n the outward unit vector normal to the grain boundary.

By considering a monophasic polycrystal system where only the reduction of

interface energy (capillarity) is taken into account (corresponding to a static

or normal grain growth), the grain boundaries move to minimize the surface

energy and the driving force is generally approximated as :

F~n = −γκ~n, (2)

where γ and κ are respectively the grain boundary energy and the mean

curvature of the grain boundary. It is important to notice the dependence

of the mean curvature definition with the number of dimensions considered.

Indeed, the 3D curvature is a diagonalizable tensor where the non-zero eigen-

values are called the main curvatures. Thus the 3D mean curvature is defined

as the trace of this tensor, i.e. the sum of the main curvatures.

When the grain boundary mobility and energy are assumed isotropic and

uniform throughout the domain, the developed microstructure can reach a

foam-like structure where boundaries are smoothly curved and triple junc-

tions form 120◦ inter-boundary angles. In this context of ideal grain growth,

the kinetics is expected to follow an inverse power-law, describing the increase

of the mean grain size as a function of time.

2.2. Microdynamics simulation for grain growth : a review

Many programs have been developed in Earth Sciences to simulate mi-

crodynamic processes (e.g. grain growth, Smith-Zener pinning) by full field

modeling [13, 16, 14] (i.e. by considering topological description of the mi-
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crostructure). There is presently one general platform called ELLE [17] (web-

site : https://www.elle.ws) that gather the modeling of several mechanisms

such as grain growth or crystallisation from a melt. This software, which

has the advantage of being open source and subject to ongoing development

by a large community of researchers, bonds a variety of physical process

simulation methods making it a very multipurpose code. Moreover the soft-

ware package includes a set of codes for individual processes which can be

combined within the same simulation. In this section, we review numerical

approaches that can be used in microstructural evolution modeling. We will

focus on the Earth Science field, although many of these methods are widely

used in other research fields (e.g., metallurgy).

2.2.1. Voxel-based methods

Within the Monte Carlo (MC) and cellular automata (CA) approaches,

the microstructure is usually discretized using a regular lattice by a set of

volume elements called voxels. Each voxel represents a group of atoms and

is characterized for instance by an orientation (or a spin) indicating which

voxels belong to a grain (figure 1.a).

The microstructure typically evolves by changing the state of the vox-

els, applying different methods depending on the approach. While MC ap-

proaches are stochastic, using probabilistic laws to change the state of a voxel,

CA can be based on either stochastic or deterministic rules which modify the

state of each CA cell. MC and CA models have benefited from considerable

efforts from the research community over the last decades and are actually

relevant despite several complications inherent to this group of methods.

The computation of GBM within the MC and CA models needs to express
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(a) (b)

(c) (d)

Figure 1: (a) example of a voxelized 2D triple junction, a grain is represented by a set of

voxel containing the same spin value, (b) a triple junction discretized using vertex (e.g.

ELLE approach), (c) an interface between two grains represented by the order parameters

of the phase field approach, (d) an interface between two grains represented by level set

functions.

the effective grain boundary energy. This energy is usually given by a sum

of pairwise voxel interactions which can be expressed in a monophasic and

isotropic case by [24] :
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Eboundtot =
1

2
γa

N∑
i=1

z∑
j=1

Kij, (3)

where a is a constant with a unit of length, N is the total number of lattice

sites, z the number of nearest neighbors of the voxel i and Kij is the kernel

which controls the strength of the pairwise interactions. The kernel is usually

constant for voxels within a given neighborhood Ni of the ith voxel such as :

Kij =

 1− δqiqj if j ∈ Ni

0 otherwise,
(4)

where qi and qj are the spins of the lattices i and j and δ is the Kroneker delta.

However, this kernel can be enriched by functions taking into account, for

instance, the distance between the voxels [25]. Eq.3 can suffice to compute

the microstructure evolution driven by the reduction of total boundary en-

ergy, but the grain boundary curvature is not consider here. In order to take

into account this driving force, CA and MC models can calculate the mean

curvature of a boundary by different methods. The explicit computation

(generally used in CA models) is often done by variations of the template

method [29] which consists of determining the portion of volume enclosed

by a template that lies on one side of the interface. The mean curvature of

the opposite side is then approximated by a linear function of the computed

volume. Implicit calculation can also be used (rather for MC models) by con-

necting the energy change accompanying the change of a voxel spin and the

mean curvature of the grain boundary. In all cases, the total energy of the

system is computed and can be used by transition rules governing the spin

change of voxels, stochastic for MC methods (such as the Metropolis func-

10



tion) and generally deterministic for CA models (such as rule arising from

the grain boundary motion eq.1). All the voxels (or a set of voxels around

boundaries) are selected (randomly within MC methods) and may switch to

the state of one of all adjacent voxels according to the transition rules. The

time increment is then realized after applying the transition rules to a single

voxel or to all voxels for respectively MC and CA methods. The determina-

tion of the incremented time varies with each methods and guaranteeing a

physical meaning is not straightforward.

The voxel-based methods such as MC and CA methods are very flexible

and have demonstrated their capabilities to simulate microstructural evolu-

tions [13]. The use of voxel and regular grids is convenient for parallel com-

putations with low computational costs. Intragranular fields such as stored

energy gradient can be easily taken into account but the discretization of a

microstructure with regular lattice of voxels can influence the evolution of the

system and may be unable to accurately reproduce the curved surfaces. This

regular lattice may also be limiting for the modeling of large deformations,

which require adaptative remeshing procedures as in many other numerical

approaches. Moreover, in MC methods it is difficult to relate model units

with physical ones, especially for the time unit (which is usually expressed

in monte carlo time steps). MC simulations parameters are then calibrated

based on the comparison between numerical and experimental results [26, 27].

The CA approaches generally deal with transition rules, which avoid the is-

sue of the units of length physical meaning and permit an easier comparison

with experimental systems [28].
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2.2.2. Front-tracking methods

Front tracking models represent grain boundaries by a network of polyhe-

dral area in 3D, formed by lines and connected nodes (figure 1.b). In contrast

to vertex methods [30], this network forms a real mesh, defining connectiv-

ity between nodes and permitting a FE resolution. Thus the microstructure

evolves through the movements of the nodes according to physical laws. This

approach permits to describe a 3D polycrystal by a 2D mesh (and a 2D case

by a 1D mesh) and therefore limits the computational cost.

There are various approaches to compute the GBM in a front-tracking

context depending on the resolution technique used to move the nodes de-

scribing the microstructure.

The first consists on the sequential displacement of the nodes (i.e. one node

at a time), within these approaches the polyhedral network does not need to

be a real mesh (e.g. no connectivity of the nodes needed) and the methods

are more relevant to the vertex methods. An expression describing the GBM

is applied to the different nodes of the system one by one. These expressions

can derivate, for instance, from a driving force of the GBM such as eq.2. The

approach implemented in the ELLE software to compute the GBM [16], use

the free energy gradient as :

dE(r)

dr
= −F, (5)

where E(r) is the free energy field over the position r and F is the driving

force of GBM. The moving direction of a node is then determined as the

direction producing the maximum reduction of free energy. Hereafter the

magnitude of the velocity v of the node is computed taking into account
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the implications of the node sequential displacements and the node is moved

with a magnitude of v∆t with ∆t the time increment.

Another way to compute the evolution of the nodes is the use of a FE res-

olution scheme [31]. Within this context, the main aim is to transform the

equations governing the motion of a grain boundary (such as eq.2) in a sys-

tem of 3N (in 3D) ordinary differential equations (ODEs) with N the number

of nodes on the interfaces. The resolution of the linear system leads to the

displacement of all the nodes, and to the evolution of the microstructure.

The tracking of boundaries permits to access easily the interface prop-

erties such as mean curvature. Moreover, nodes can have a number of at-

tributes (e.g. interfacial energy, grain boundary mobility) that allow to define

the properties of the interface they represent. However, topological events

such as shrinkage or nucleation of grain are difficult to manage in terms of

remeshing, especially in 3D. Another disadvantage with this approach is that

grain interiors are not described by the mesh, which may be problematic to

take into account some properties at the grain scale such as intragranular

stored energy or intragranular nucleation.

2.2.3. Phase field methods

The phase field methods (PFMs) provide a powerful methodology to de-

scribe phase transformations and were initially used to model crystallization

or sub-solidus phase transformations. Actually, the PFM are also used in or-

der to simulate microstructural evolutions such as recrystallization and grain

growth [18]. Within the PFMs, the description of the interfaces is implicit,

and the microstructure is described by continuous functions of the spatial
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coordinates and time also called order parameters. Within each grain only

one of these parameters take the value of unity and the others have a zero

value. Across the grain boundaries the phase field parameter continuously

varies from 1 to 0 by usually following an hyperbolic trigonometric function

of the Euclidean distance to the interface (figure 1.c). The microstructure

evolves through the change of order parameters by resolving a given set of

coupled partial differential equations.

The phase field approach considers that grains and grain boundaries are

related to the free energy F of the system. This free energy can be expressed

as an integral of the free energy density over the all domain, taken into ac-

count all the order parameters describing the microstructure, and the gradi-

ent energy coefficient which controls the boundary thickness. The calculation

of the free energy density introduces also phenomenological parameters, as

the gradient energy coefficient which has to be calibrated on experimental

data or chosen arbitrarily. The microstructure evolution is then a result of

the minimization of this free energy F through the resolution of the time-

dependent Ginzburg-Landau equations :

∂ηi(r, t)

∂t
= −L diF

dηi(r, t)
, i = 1, ..., p, (6)

where di
d

denotes a functional derivation, ηi, i = 1, ..., p are the order param-

eters, r and t are respectively the spatial and time variables and the kinetic

coefficient L is related to the grain boundary mobility. This set of equation

can be discretized and then solved for instance by a FE or finite volume

method.

Overall, the PFMs are versatile approaches which are able to compute
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the microstructural evolutions of a polycrystal. Nevertheless, the formal-

ism introduces numerical parameters, such as the gradient energy coefficient

(related to the boundary thickness), which are not straightforward to fix

and largely impact the simulation results. Finally, PFMs have relatively

high computational costs and the parallelization of codes are often needed

to compute the evolutions of representative systems, which is quite common

for all numerical methods dealing with microstructure evolution in context

of a FE strategy.

3. Level set approach for grain growth

The level set framework used here for the full field modeling of the mi-

crostructure supports implicit description of grain boundaries by level set

functions in a FE framework. Initially designed for metallurgic considera-

tions, as microstructure evolutions in industrial processes, this model has

already been used in 2D or 3D to simulate dynamic [20] or static [32] re-

crystallization and grain growth [19, 22] with possible inert second phase

particles [33] in some metallic materials. As for the phase field approach, the

main weakness of this procedure is its computational cost, related to the large

number of LS functions needed to describe the microstructure. One of the

aims of the present work is to test the adaptability of this formulation to a

geological material such as olivine aggregates considering only grain growth.

3.1. The level set formalism

A LS function ψ is defined over a domain Ω as the signed distance function

to the interface Γ of a sub-domain G of Ω [21] (figure 1.d). The formulation
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adopted here involves that values of ψ are calculated at each node of the

mesh and the sign convention states ψ > 0 inside G and ψ < 0 elsewhere :

∀t

 ψ(X , t) = ±d(X ,Γ(t)), X ∈ Ω

Γ(t) = {X ∈ Ω, ψ(X , t) = 0}
(7)

where X represents space variables. Therefore the outwards normal ~ni and

the mean curvature κi of the grain constituting ψi are defined by :

~ni(X , t) =
−−−→∇ψi(X , t)
‖ψi(X , t)‖

, (8)

κi(X , t) = ~∇.~ni(X , t). (9)

κi is then equivalent to the opposite of the laplacian of the LS function if ψi

remains a distance function (i.e. ‖ψi(X , t)‖ = 1) at least in a thin layer around

the interface. Restoring the metric property (redistancing) of LS functions is

an inherent problem of LS methods and reinitialization algorithms must be

used during the simulation in order to keep LS functions as signed distance

functions. The reinitialization algorithm implemented in the used formalism

is based on a direct method (exact analytic reconstruction of the distance

function) enhanced by a k-d tree space partitioning technique [34] for each

LS function at each timestep.

The microstructure evolution governed by the velocity field defined in eq.1

can be therefore computed by solving a set of NG (number of grain within

the system) diffusive equations :
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∀i ∈ {1, .., NG}


∂ψi(X ,t)

∂t
− γM∆ψi(X , t) = 0

ψi(X , t = 0) = ψ0
i (X)

(10)

Nevertheless, the approach described above requires as much LS functions

as grains and the numerical cost of the resolution of eq.10 and reinitializa-

tion becomes quickly problematic. In order to reduce the computation time,

Global level set (GLS) functions are used to achieve steps previously men-

tioned [21]. These GLS functions do not represent only one grain but several

grains separated from each other by a certain number of grains. In order

to avoid numerical coalescence during the evolution of the microstructure, if

grains represented by the same GLS function are becoming too close from

each other they can be transferred to another GLS function by a grain recol-

oring algorithm [21]. Thus the number of functions needed to represent the

microstructure is much smaller than the number of grains constituting the

system, which significantly reduces the computational cost of the simulation.

Another point must be highlighted considering the LS method : the diffusive

formulation (i.e. eq.10) can lead to vacuums and overlaps apparitions after

each time step. To address this issue, a simple treatment is performed on

each GLS function after solving diffusive equations presented above [35]:

ψi(X , t) =
1

2
(ψi(X , t)−maxi 6=j(ψj(X , t)) (11)

Applied on a multiple junction this treatment allows to removing the vacuum

(or overlap) [35].
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3.2. Initial microstructure & boundary conditions

To simulate microdynamics processes as grain growth, an initial mi-

crostructure is needed and can be generated either by an algorithm or by dig-

italizing experimental data as optical microscope images for example. Here,

in order to respect a given grain size distribution, the considered digital mi-

crostructures are generated with a Voronöı-Laguerre Dense Sphere Packing

(VLDSP) algorithm [36] based on the dropping and rolling method, which

enables to generate a polycrystal in agreement with the required grain size

distribution if the domain size is large enough.

Boundary conditions are also needed to solve partial differential equations as

eq.10 in a FE scheme. Boundary conditions used here (null Neumann bound-

ary condition) imposed orthogonality between grain boundaries and domain

boundaries. This imposed angle does not lie with any physical consideration

and may induce some errors due to boundary effects if the number of grain in

the domain is not large enough. A convergence study of the mean grain size

evolution in terms of domain size was then automatically considered in order

to ensure convergence of the results while limiting the calculation domain

size and so the numerical cost. It must be highlighted that periodic bound-

ary conditions (optimal for minimizing the calculation domain size) are not

considered in our numerical framework in order to be able to consider local

remeshing during calculations as described in the following section.

3.3. Mesh refinement and timestep

A grain growth simulation as described above does not need a fine mesh

in grain interiors but the grain boundary surroundings need to be finely de-

scribed. A mesh refinement around the interfaces is used in 2D in the FE
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context, and this refinement is adapted during the simulation in order to

follow the grain boundary movements [37]. Local remeshing during 3D cal-

culations was not performed, as it does not represent any gain in terms of

time calculation, oppositely to the 2D context where local adaptive remesh-

ing strategy is interesting in terms of numerical cost [15]. Thus in 3D, a

initial mesh is chosen fine enough to describe grain boundaries based on a

convergence study on the mean grain size evolution as a function of the initial

homogeneous finite element size. The FE mesh does not evolve during the

simulation.

The choice of the incremental time is another crucial point : it must be large

enough to limit the computational time but small enough to describe accu-

rately the grain size evolution, even if an implicit FE resolution is used here.

The solution employed here in 2D and 3D use an adaptative timestep ∆t

which is computed at each step as follows :

∆t =
cEp
vm

(12)

where c is a percentage of the refined mesh thickness Ep (typically 15%) in

2D and vm is the maximum value of the grain boundary velocity over the

all domain computed with eq.1 and 2. In 3D the product cEp is replaced by

percentage of the cell size. This approach enables to have at any time an

optimized timestep which can be long if the microstructure evolves slowly,

and short if the GBM is fast.
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4. Methods

4.1. Initial grain size distribution and grain boundary mobility and energy

Physical parameters needed for investigating grain growth are the mo-

bility and the energy of grain boundaries. These parameters are anisotropic

in natural rocks [38] and this anisotropy can be evaluated experimentally

or numerically by various methods [39]. However the introduction of an

anisotropy of the interfacial energy changes the FE formulation of the prob-

lem which is a work in progress. Even if some basic anisotropic laws such as

a Read-Shockley can already been treated [40] they will not be presented. In

this paper, we made the assumption of isotropic grain boundary properties.

Indeed, in pure olivine aggregates, anisotropic grain evolution mainly occurs

as a result of uneven distribution of dislocation densities and crystalline pre-

ferred orientation due to rock deformation [41], which is not considered here.

The grain boundary energy used here has been established by Duyster &

Stöckhert [38] for high angle grain boundaries of olivine in natural peridotite

and yields a value of 1.4 J·m-2.

The grain boundary mobility (m4·J-1·s-1) is a temperature dependent param-

eter which is usually defined with an Arrhenius law :

M = M0e
−Q/RT , (13)

where M is the mobility, M0 the reference mobility, Q the activation en-

ergy, R the gas constant and T (K) the absolute temperature. In order to

determine M0 and Q, experimental procedures monitor the mean grain size
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evolution of a rock sample during an isothermal annealing treatment at dif-

ferent temperatures. In this paper, for the firsts simulations the values of M0

and Q will be based on those determined by Karato [10] i.e., respectively,

4.104 mm4·J-1·s-1 and 160 to 200 kJ·mol-1 depending on experimental condi-

tions. Then, the comparison between the simulation and the experimental

results enable to adjust the material parameters M0 and Q (see section 5.1).

In order to compare experiments and simulations, similar initial grain size

distributions must be used. Figure 2 represents the experimental initial dis-

tribution in volume fraction and the log-normal law used to approximate this

distribution.

Figure 2: Blue squares : initial grain size distribution as volume fraction from Karato

1989 [10], yellow line : best fitting log-normal law imposed in our VLDSP algorithm

The experimental initial grain size distribution can be well approximated by
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a log-normal distribution characterized by a mean grain size µ = 2.24 µm, a

standard deviation σ = 0.82 µm and so a σ/µ ratio of 0.37.

4.2. Tracking grain growth kinetics

Considering the three main following hypotheses :

• the grain boundary mean curvature κ can be approximated by 1
R

where

R is the equivalent radius of the grain,

• the mobility and the grain boundary energy are isotropic and uniform,

• the temperature is constant,

the Burke and Turnbull (1952) model can be built from eq.1 and allows

describing grain growth kinetics only through the average grain size as [42]:

< R >2 − < R0 >
2=

1

2
Mγt, (14)

where R and R0 correspond respectively to average grain radii at times t and

0 s.

Even if this model does not take into account neither topological nor neigh-

boring effects, it has been used in some experimental cases, as for example to

determine first order mobility knowing the grain boundary energy [10, 43].

In these experiments, a sample is annealed at constant pressure and temper-

ature and an average grain size is measured at different times. This process

applied at different temperatures allows determining the reference mobility

M0 and the activation energy Q in the Arrhenius law of the mobility (eq.13).

However, real microstructures do not always satisfy the hypothesis used in

this model. Eq.14 is then often generalized according to [19] :
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< R >2 − < R0 >
2= αMγtn (15)

where α and n are dependent on initial grain size distribution [19], grain

shape or presence of secondary phases, pores or melt [11]. In the case of a

monophasic system without pores or melt, values of α and n can be plotted,

for log-normal distributions, against the σ
µ

ratio [19, 22]. As an example, α

and n are respectively close to 1
2

and 1 (leading to eq.14) for initial grain size

distributions which are log-normal with a σ
µ

ratio equal to 0.45 considering 2D

grain growth [19] and may be equal to 0.35 considering 3D grain growth [22].

4.3. Determining grain sizes

The initial grain size distribution of Karato [10] presented in fig.2 comes

from the olivine powder which served to build the sample. This distribution

has been measured by an Elzon Particle Counter which indicates that this

distribution is a 3D distribution. However, during the annealing experiment,

the mean grain size distribution has been monitored by 2D observations of

a thin section of the sample. In the numerical simulations presented here we

seek to be coherent with this experimental procedure (tab.1).

For 2D grain growth simulations (LS2 and V2), we use the initial grain size

distribution of Karato 1989 [10] transformed by the inverse Salykov analy-

sis [44] which gives a volume distribution with a mean grain size of 2.05 µm,

a standard deviation of 0.68 µm and so a σ/µ ratio of 0.33. This analysis

permits to compute a statistical equivalent 2D distribution from a 3D one.

Then we compare computed grain sizes during the annealing treatment with
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Table 1: Characteristics of the different simulations realized within the present work.

the ones obtained by Karato.

For the 3D grain growth simulations (LS3/3 and LS3/2), the initial grain size

distribution used is the one presented in fig.2. Then, for the determination of

the grain size evolution during the annealing treatment and the comparison

with the experimental ones, two cases will be distinguished. First, the com-

puted 3D grain size distributions will be transformed by the inverse Saltykov

analysis (LS3/3) in order to get 2D equivalent distribution comparable with

experimental observations. Second, we estimate the 2D grain sizes by pro-

jecting the LS functions on regularly spaced slices cross cutting the domain

volume. We then compare experimental data with average grain sizes com-

puted from these 2D slices. The initial grain size distributions, in number,

for all the simulations are presented in fig.3.

The LS3/2 grain size distribution has more small grains than the LS3/3

one. This has already been noticed [45, 46] and may be attributed to the

effect of the left distribution truncation.
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Figure 3: Initial grain size distributions for the different simulations (see tab.1). As

explained in the section the LS3/3 distribution is a 2D Saltykov analysis on 3D grain size

distribution and the LS3/2 distribution is obtained by averaging the distributions of the

ten 2D sections.

4.4. Computational domain size and boundary influence

During the annealing simulations, the number of grains decreases and

the portion of grain boundaries in contact with the computational domain

boundaries increases. The evolution of these grain boundaries is dictated by

the imposed boundary conditions (see section 3.2) and does not have any

physical meaning. Thus when the grain number in the domain is not large

enough, the grain growth mechanism is polluted by boundary effects and the

mean grain size evolution diverges from the Burke and Turnbull model. In

order to have a representative number of grains over a duration comparable

with the experimental data (few hours), a larger domain must be considered.

Square computational domains of increasing sizes have been tested (see fig.4)

in order to determine the optimal domain size, with the best ratio of grain

25



number versus computational cost.

Figure 4: Mean grain size evolution during annealing 2D simulation at 1573 K, for a

mobility activation energy of 200 kJ and for square computational domains of 0.2x0.2,

0.1x0.1 and 0.03x0.03 mm initially containing respectively 3700, 960 and 110 grains.

The apparition of steps on the evolution curves reflects the fact that the num-

ber of grains is no longer representative. Indeed, these steps appear earlier

for smaller domains with lower initial grain number. After the convergence

study of the mean grain size evolution with the calculation domaine size, we

choose for this study squared or cubic domains with size of 0.2x0.2mm and

0.15x0.15x0.15mm in 2D and 3D, respectively.

Concerning the slices of the LS3/2 simulation (see tab.1), in order to get

a representative number of grains, we do not consider the results obtained
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when the number of grains per slice is lower than 200.

4.5. ELLE grain growth simulations

Within the ELLE software, two algorithms are available to simulate the

evolution of a microstructure through grain growth driven by capillarity.

These two algorithms are based on the front-tracking method described in

the section 2.2.2.

The first one, called ”growth” uses normalized material parameters and phys-

ical units. In fact, the simulation results of this algorithm are neither de-

pendent on the grain boundary mobility/energy nor on the temperature,

timestep or unit of length values. The only parameters which have an impact

on the simulation are the numerical parameters such as the switch distance,

which controls the maximal displacement of a node during a timestep. Even

if the obtained microstructures have similar topological aspect than those ob-

tained from an experimental annealing (such as those obtained by Karato [10]

: i.e. foam texture), the grain growth kinetics cannot be considered within a

physical point of view.

The second one, called ”gbm” takes into account the material parameters

and the physical units in the calculation of the node displacements. In this

case, grain growth kinetics from ELLE simulation can be compared with

those obtained with experimental data. Thus the V2 simulation (see tab.1)

is performed by using the ”gbm” algorithm.

The ELLE’s microstructure is initialized by using the ”ppm2elle” utility

which transform a ppm image into a ELLE file. The image used is the one

obtained initially by the LS2 (see tab.1) 2D level set simulation.
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5. Results

We first present the calibration of the grain boundary mobility activation

energy with the experimental data for the different simulations (see tab.1).

Then, the grain size distributions at different time steps are compared for

the different simulations. Finally, one of the computed microstructures is

compared with the experiment and we present an annealing simulation of

a more complex microstructure with an initially heterogeneous grain size

distribution.

5.1. Material parameters calibration

For all the simulations described in section 4.3 and in order to deter-

mine the best-fitting activation energy we adopt the following approach :

the interfacial energy and the reference mobility are fixed respectively at 1.4

J·m-2 and 4.104 mm4·J-1·s-1, then an activation energy is chosen. Here we

select an initial intermediate value of 180 kJ·mol-1 between those determined

experimentally by Karato 1989 [10]. A grain growth simulation is then per-

formed until reaching a < R >2 − < R0 >
2 value equal to one of those

obtained experimentally. Using eq.14 and the Arrhenius law of the mobility,

the expression of the optimized activation energy Q can be expressed as :

Q(J.mol−1) = 180.103 −RTln(
tsimu
texp

) (16)

where tsimu and texp are respectively the simulation time and the experimen-

tal time needed to reach the same < R >2 − < R0 >
2 value. By using the
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experimental results of Karato 1989 [10] and averaging the obtained values

with the different points at 1473K and 1573K, we obtain a best-fitting ac-

tivation energy value. For both the LS3/3 and LS3/2 simulations, the best

fitting activation energy value is 171.5 kJ·mol-1 while the LS2 and V2 ones

lead to 185 kJ·mol-1. However, the kinetics obtained with those values are

quite different between the 3D (LS3/3 and LS3/2) and the 2D simulations

(LS2 and V2) in particular at the beginning where the 2D grain growth is

slower than the 3D one and at the end where the 2D grain growth is faster

than the 3D one. The reference mobility and the activation energy for the

LS2 and V2 simulations are then adjusted. The assumed activation energy

is lowered (180 kJ·mol-1), and the reference mobility is adjusted to fit the

LS3/3 grain growth kinetics. Final mobility parameters (M0(mm4·J-1·s-1),

Q(kJ·mol-1)) for the different simulations are (4.104, 171.5)LS3/3,LS3/2 and

(6.104, 180)LS2,V 2.

Figure 5 shows the experimental grain growth kinetics from [10] and the

computed and then extrapolated (using the Burke and Turnbull mean field

model, eq.15) grain growth kinetic for the 3D simulations (LS3/3 and LS3/2)

and the 2D ones (LS2 and V2). Those results are presented through the plot

of log(< R >2 − < R0 >
2) against log(t) which allows to determine n and α

of the eq.15 mean field model by fitting the obtained results.

For both the LS3/3 and the LS3/2 simulations the grain growth kinetics

are similar (fig.5 and fig.6) and the n and α values are respectively equal to

0.88 and 1.27. For the LS2 and V2, the grain growth kinetics are also almost

the same with n = 0.93 and α = 1.34. Those adjusted parameters are not far

from those obtained for these initial distributions with the mean field models
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Figure 5: Mean grain size time evolution at 1473 K (left) and 1573 K (right), M0 =

4.104 mm4·J-1·s-1 and Q = 171.5 kJ·mol-1 for the LS3/3 and the LS3/2 simulations and

M0 = 6.104 mm4·J-1·s-1 and Q = 185 kJ·mol-1 for the LS2 and the V2 ones. The experi-

mental results of Karato [10] are plotted in green.

of Cruz-Fabianno et al. [19] for 2D grain growth and Maire et al. [22] for 3D

grain growth.

All simulation results at 1573K are plotted on fig.6, for their own best-

fitting mobility parameters. The related distributions are presented in fig.7

at different time steps. Within this figures, the maximum time for the com-

parison is limited by the LS3/2 simulation in which the number of grains per

slice decreases rapidly under 200.

Figures 6 and 7 show that the different simulations (2D or 3D, LS or V)

give consistent results. The mean grain size evolutions (fig.6) are close to

each other. Even if the LS3/2 simulation underestimates the mean grain size
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Figure 6: Evolution of the mean grain size for each simulations : LS3/3 (yellow), LS3/2

(orange) and standard deviation as error bars, LS2 (green), V2 (brown)

Figure 7: Comparison of the grain size distributions for the different simulations during

an annealing treatment at 1573K.
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in comparison with the LS3/3 one, the mean grain size of the latter is within

the standard deviation of the one determined by the slices averaging. The

grain size distribution evolutions (fig.7) also show consistent results. The

LS3/2 still includes more small grains than the other ones, which may be

explained by the reasons exposed in section 4.3.

5.2. The olivine grain growth kinetics

Once the material parameters are calibrated (through the activation en-

ergy in our case), the computed grain growth kinetics is in good agreement

with the experimental one (see fig.5). Moreover, the grain dimension and

geometry obtained from the computed 2D microstructure after 2 hours of

annealing is comparable to the one presented by Karato 1989 (fig.8) [10].

Figure 8: Left : experimental microstructure from [10] after 2 hours annealing at 1573K,

right : LS2 simulation after 2 hours annealing at 1573K

In order to simulate a system more similar to a natural deformed rock, we

consider a fine grained zone (mylonitic or ultramylonitic texture) embedded

32



in a zone of coarser grains (porphyric texture) (fig.9), representing a fine-

grained shear band.

The microstructure is considered as homogeneous when the mean grain

sizes of the inner part and the outer parts, plus or minus the standard devia-

tion, are equal. At 1250K, the time needed to erase the scar does not exceed

200 days (fig.9).

6. Discussions

The capillarity-driven GBM is a 3D physical mechanism controlled at

the first order by the boundary curvatures. In fact, the 2-dimensional as-

pect of the curvature can strongly impact the grain growth kinetics. For

instance, a highly curved boundary in one direction may be submitted to

a null driving force if the curvature in the other direction is also elevated

with an opposite sign. Although X-ray CT scanning is increasingly used to

measure 3D fabrics in rocks [47], the technique would be of limited interest

for a monomineralic aggregate. Therefore, interpretations of 2D observa-

tions have to be taken with caution, keeping in mind the 3D character of the

observed mechanism. Thus, numerical simulations are convenient tools to

study this 2D/3D paradigm, which is mostly ignored in the state-of-the-art

grain growth experiments.

Our results suggests that, as grain growth is inherently a 3D process, it

should be modelled also in 3D. However, the numerical costs of a 3D sim-

ulation may be quickly prohibitive. The Saltykov method is an interesting

alternative to the use of 3D model since it allows determining an equivalent
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3D grain size distribution (or inversely). Hereafter, 3D numerical simulations

and their 2D equivalent can be realized in order to define some transition laws

for instance to adjust a 3D mean field model from a 2D one.

The comparison of the 2D LS simulation with the ELLE simulation shows

very good agreement. Nevertheless the ELLE grain growth simulation has

a much lower computational cost than the LS one : one hour is enough to

simulate the evolution of the system in the first case while the same LS com-

putation takes a few dozen hours. Indeed, as mentioned above, the ELLE

approach only discretises the interfaces, which is equivalent to deal with a

1D mesh while the LS calculation needs a 2D mesh. Moreover, within the

ELLE simulation, the displacement of the nodes is sequential while the LS

approach uses a FE resolution which is more expensive in computational

resources. Nevertheless, the ELLE approach can become limited for some

applications. First, the non description of grain interiors may limit the sim-

ulation of some processes for instance those which depend on intragranular

stored energy. The LS approach permits to describe intragranular fields

within a same framework which can be useful for instance for dynamic re-

crystallization modeling. Second, the 3D implementation within a vertex

approach is not straightforward and uncommon in the state of the art, due

to the difficulty of managing topological events as shrinking or nucleation of

grains. As the grain growth process is inherently a 3D mechanism, it can be

useful to model it in 3D, that is something the LS approach allows to do.

Considering the GBM in a pure olivine system and based on our re-

sults, we conclude that a surface energy of 1.4 J·m-2 and a mobility of
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M0 = 4.104 mm4·J-1·s-1, Q = 171.5 kJ·mol-1 for 3D simulation and M0 =

6.104 mm4·J-1·s-1, Q = 180 kJ·mol-1 for 2D ones, are satisfying estimates

for olivine/olivine grain boundaries. The distribution evolutions presented

in fig.7 are close to each other. This shows that 2D simulations can predict

equivalent distributions of 3D simulations by adapting the (M0, Q) couple.

In all cases, 2D or 3D observations of a 3D system or 2D computations, the

grain growth kinetics is extremely rapid compared to the typical geological

timescale, the grain size increasing from a few micrometers to a few tenths

of millimeters in a dozen hours. Within the context of the dormant plate

boundaries, it signifies the rapid erasing of fine-grained weak zones.

If we consider that the presence of multiple fine-grained bands as in fig.9

is responsible for the existence of weak zones, the erasing scar time can be

evaluated as the time needed to homogenize the microstructure. Our results

show this time which is extremely fast against the hundreds Myr for the

persistence of natural weak zones. As mentioned previously, the fast grain

growth kinetics and so the rapid scar erasing can be attributed to the pu-

rity of the systems considered here. Indeed, both the experimental samples

of Karato [10] and the numerical microstructures of the present work are

only composed of olivine. The inhibition of grain growth in dormant weak

zone conditions (i.e. non-deformed), can be explained by the presence of

secondary phases (SP) in mantle rocks.

The presence of SP in peridotites such as pyroxenes, spinels, plagioclase and

garnets will influence different physico-chemical processes. Indeed, depend-

ing on second phase particles (SPP) size and nature, a drag pressure can

act on grain boundaries and counteract grain growth driving pressure [48]
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(well known as Smith-Zener pinning mechanism [49]). The presence of free

surfaces and pores may also act as SPP and impede the GBM through the

Smith-Zener pinning mechanism [50, 33]. The movement of interfaces be-

tween two phases may also be limited because of the kinetics of chemical

elements transfer throughout the interface [12]. In our simulations, the grain

boundaries move to minimize their total surface without be impeded by any

SPP or interphase boundaries. As the natural peridotites also contain a

certain amount of second phases, it seems obvious that the time needed to

erase inherited structures in natural rocks is much larger than in pure olivine

aggregates [1].

7. Conclusion

The simulations performed within the present work highlight the 3D char-

acter of the grain growth mechanism, and the influence of the mode of obser-

vation of grain size evolution during a grain growth experiment or simulation.

As 3D simulations or experimental observations are not always easy to set

up, 2D ones are often used to determine 2D effective material parameters

which are different from the physical 3D ones in the presented results. Those

effective parameters allow to predict a 2D behavior equivalent to a 3D one. A

phenomenological law which evaluates the physical material parameters Mγ

from the ones calibrated with 2D observations may be determined either by

the realization of similar simulations with different grain size distributions or

by experiments coupling 3D and 2D observations during annealing.

Like in previous papers focusing on grain growth in pure olivine aggre-

gates [10, 11], we observe that grain growth kinetics is very fast. In fact,
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this grain growth rate suggests that persistent weak zones should disappear

within a few hundred days which is not observed in nature. Thus, pure

olivine aggregates are not relevant to study the persistence of weak zones

at the geological time scale through the grain growth in mantle rocks. Nev-

ertheless, neither the grain boundary pinning by SPP, nor the influence of

interphase boundaries have been considered in this work. In future work,

the numerical simulation will be enriched in order to take into account those

different mechanisms. The simulations presented in this work have permitted

to determine Mγ products for the olivine/olivine grain boundaries which can

be used within more complex simulations.
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Figure 9: Left top: initial microstructure with fine grain zone representative of a shear

band, the domain size 3x3mm, right top : microstructure after 185 days annealing at

1250K, bottom : grain size evolutions of the inner part (orange) and the outer parts

(blue) of the microstructure, the color are also relative to the colored boxes of the left

top picture, the error bars are related to the standard deviation of calculated mean grain

size. The grain colors are related to the index of the global level set (GLS) function which

describes the considered grain.
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