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Using machine learning and a data-driven approach to identify
the small fatigue crack driving force in polycrystalline
materials
Andrea Rovinelli 1, Michael D. Sangid 1, Henry Proudhon 2 and Wolfgang Ludwig3

The propagation of small cracks contributes to the majority of the fatigue lifetime for structural components. Despite signi� cant
interest, criteria for the growth of small cracks, in terms of the direction and speed of crack advancement, have not yet been
determined. In this work, a new approach to identify the microstructurally small fatigue crack driving force is presented. Bayesian
network and machine learning techniques are utilized to identify relevant micromechanical and microstructural variables that
in� uence the direction and rate of the fatigue crack propagation. A multimodal dataset, combining results from a high-resolution
4D experiment of a small crack propagating in situ within a polycrystalline aggregate and crystal plasticity simulations, is used to
provide training data. The relevant variables form the basis for analytical expressions thus representing the small crack driving force
in terms of a direction and a rate equation. The ability of the proposed expressions to capture the observed experimental behavior
is quanti� ed and compared to the results directly from the Bayesian network and from fatigue metrics that are common in the
literature. Results indicate that the direction of small crack propagation can be reliably predicted using the proposed analytical
model and compares more favorably than other fatigue metrics.

npj Computational Materials (2018) 4:35 ; doi:10.1038/s41524-018-0094-7

INTRODUCTION
Modeling the propagation of small fatigue cracks, especially cracks
that are intragranular in nature, requires information about how
the underlying microstructure affects the crack behavior. While,
crack initiation has been modeled as both stochastic1,2 and
deterministic,3–6 there is still an open question if the small fatigue
crack behavior can be predicted. Small crack propagation follows
crystallographic directions and planes, and thus is said to be a slip-
mediated process.7–9 The behavior of long cracks is well described
by linear elastic fracture mechanics through the Paris law.10 While
for small cracks, the propagation rate strongly deviates from linear
elastic fracture mechanics behavior and exhibits large scatter,11–13

based on the complex interactions between the small crack and
the local microstructure. Several relationships have been proposed
to capture the small crack behavior, albeit these theories have not
been validated at the appropriate length-scale due to prior
limitations in the experimental measurements. With the advent of
synchrotron-based x-ray tomography and diffraction techniques
combined with in situ loading, the necessary data are available for
the crack direction and propagation rate with respect to the
microstructure. In this work, experimental data for the evolution of
a fatigue crack relative to the local microstructure during in situ
loading14,15 are used as the foundation to build a model for the
driving force of small fatigue cracks.

Based on the 3D nature and intricacies of the local crack growth
process, simple relationships governing the fatigue crack
dynamics are very dif� cult to extract, thus data-driven approaches
offer a promising path forward. Speci� cally, machine-learning

techniques can be utilized to address the complexity of the small
crack propagation phenomenon by identifying statistically rele-
vant correlations. Bayesian networks16 (BNs) provide a machine
learning, data-driven framework offering two major bene� ts. First,
BNs are non-parametric by construction, thus equations are not
required a priori to construct a model of the investigated
phenomenon, and second, the results of the BN are presented
in terms of probabilities and correlations. The fact that a BN model
does not require equations is instrumental to avoid assumptions,
and the associated inherent biasing, regarding the in� uence of
each variable on the target response. Based on the micromecha-
nical � elds ahead of the small crack, the interpretation of the BN
results provides a means to build a deterministic metric for the
small crack driving force, which is supported by the available data.
The use of BNs have been underutilized in fatigue, but the few
available studies have shown promising results.17–20 In this study,
as shown in Fig.1, a propagating crack is characterized relative to
the local microstructure in a polycrystalline beta-metastable
titanium alloy (Fig. 1a) and combined with associated crystal
plasticity simulations (Fig.1b) to complement the dataset.
Machine-learning techniques are applied to the available data to
build a BN framework (Fig.1c), which is used to compute
correlations (Fig.1d). This BN can be used, on its own to predict
crack growth, but this study aims to identify an analytical
relationship for the crack driving force metric. Thus, the relevant
variables, as identi� ed from correlations produced from the BN,
are selected, and a functional form of the deterministic driving
force metric is ascertained through a machine learning approach
(Fig.1e). Finally, experimental observations are compared with the
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predictions of fatigue crack growth via the (i) BN and (ii) the
analytical form of the driving force metric identi� ed by interpret-
ing the results of the BN (Fig.1f).

Through the years, researchers have identi� ed multiple micro-
mechanical variables and microstructure features that in� uence
the propagation of small fatigue cracks. Since small crack growth
is crystallographic in nature, it is heavily in� uenced by the
microstructure of the material. Originating from multi-axial
approaches, several researchers have pointed to the important
role of a tensile opening stress acting normal to the critical (slip)
plane21,22 (� N) on material failure. Stress triaxiality (� TriAX), which is
the ratio between the hydrostatic stress (� H) and the von Mises
equivalent stress (� VM), has been reported to be a precursor to
material failure.23,24 Moreover, at the continuum length-scale, the
fatigue crack propagation direction is based on the orientation of
the principal stress.25 Therefore, at the grain-scale, the minimum
angle of the principal stress axes with respect to the active� 111�

slip direction, � � I;II;III

111h i

� �
, and the corresponding magnitude of the

principal stresses (� I,II,III) are included in the crack propagation
analysis. The reference� 111� slip directions are selected due to
the prevalence of pencil-glide mechanics for the BCC material
analyzed in this study.26,27 The values of micromechanical� elds in
the proximity of the crack front are strongly in� uenced by the

microstructural features. Two of the most in� uential variables
governing the rate of small crack propagation are the distance of
the crack to the nearest grain boundary (GB) along the direction of
crack propagation (GBdist) and the character of the GB imposing
the barrier to crack growth.28–31 The GB character is not
investigated in this present work, as the crack is con� ned to a
small sample of grains and does not cross a statistically signi� cant
number of GBs to employ a correlation analysis. To accurately
predict the small crack propagation direction and rate, the
aforementioned micromechanical and microstructure variables
are considered in a semi-supervised machine learning framework
to identify correlations via two distinct BNs.

Starting from the results of the machine learning framework,
this work aims to identify a metric that can be used to describe the
small crack driving force for BCC alloys subjected to high-cycle
fatigue loading. In the last decades, many analytical surrogate
metrics for the small crack driving forces, which are commonly
known as fatigue indicator parameters, have been postu-
lated,21,32–35 albeit seldom of these theories have been directly
compared to 3D experimental data.36–38 Due to the nature of their
construction, these fatigue metrics would bene� t from a
systematic analysis of the variables possibly in� uencing the small
crack propagation process. In previous work, we show that the
available fatigue metrics, present in the literature, do not exhibit

Fig. 1 Schematic depicting the adopted procedure to identify a data-driven deterministic driving force for small crack propagation, in this
� gure X1, X2,…, Xn represent the microstructural and micromechanical variables considered within this framework
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satisfactory predictive fatigue performance for the analyzed BCC
alloy.37 Therefore, we improved the fatigue prognosis based on a
non-local data mining procedure along potential crack paths
aligned with the available� 111� crystallographic slip directions.38

This echoes the pencil-glide deformation mechanics observed in
other BCC alloys26,27,39; although the spatial resolution available in
this work (slightly below a micrometer), ultimately limits the
microscopic failure mechanism determination. A similar approach
is used in this work but considering multiple micromechanical and
microstructural variables to� rst predict the crack path and then
the associated speed of crack propagation. Two separate BNs are
constructed by semi-supervised machine learning, one to model
the small crack propagation direction, and the other to compute
the associated small crack propagation rate. The correlation
between each variable and the fatigue crack mechanics, in terms
of both the direction and propagation rate, will be reported and
used to construct an analytical form of the small crack driving
force. The predictions based on the BNs and analytical formulation
will be directly compared with the experimental results.

RESULTS
BNs can provide a representation for machine learning applica-
tions and causal relationships. The foundation of BNs is the Bayes’
theorem (Eq.1), which is used to update the probability of an
event � occurring, given a set of evidencex.

� � xj
� �

¼
f xj�
� �

� �
� �

R
f xj�
� �

� �
� �

d�
; (1)

where f xj�
� �

is the likelihood function and � represents a
probability distribution. In this work,� will either represent the
crack propagation direction or the associated propagation rate,
while x will represent all the micromechanical and microstructural
variables investigated in this work.

The goal of this analysis is to use BNs to identify analytical
expressions for the crack growth direction and the associated
propagation rate. The� rst step toward this goal is to identify and
characterize correlations embedded within the BN models and use
these correlations to construct the building blocks of the analytical
forms for the small crack driving forces. In addition to the
micromechanical variables previously mentioned, the BN models
account for the maximum resolved shear stress� �

max

� �
and the

maximum accumulated plastic shear� �
max

� �
along a slip direction.

Furthermore, the overall crack length (a) has been included in the
BN model describing the crack propagation rate.

Relevant variables are identi� ed by quantifying their correlation
with the experimental observations (e.g., crack propagation in this
case). In BNs, the relationship between discretized variables are

encoded into joint probability tables (i.e.,p(x,y), wherex and y are
the states of two discrete variablesX and Y, respectively).
Therefore, the normalized mutual information (NMI, as de� ned
in the Methods section, Eq.24) metric is used in this work to
quantify the correlations. The NMI is a measure of the uncertainty
reduction achieved on the value of one variable by observing the
state of another. Figure2 depicts the values of the NMI, and
therefore their associated correlation, between the selected
micromechanical/microstructural variables and the crack propaga-
tion direction (Fig.2a) and speed (Fig.2b).

By interrogating the BN models, the nature of these correlations
(i.e., linear, quadratic, etc.) between each variable and the
observed crack propagation direction and rate can be identi� ed.
To perform this analysis, the BN models are systematically
interrogated by continuously varying the mean of the variables
of interest (e.g., those variables displaying a strong correlation in
Fig. 2), while recording the updated value of the objective
quantities, the probability of the crack propagating along a certain
crystallographic direction,P(F), or the rate of propagation, da/dN.
This procedure is applied to one variable at a time without
enforcing any constraints on the other variables. The result of this
procedure is a statistical trend representing the effect that a
variable has on the crack propagation direction and rate (Fig.3).

The correlation analysis shows, in Fig.2, that the micromecha-
nical quantities most in� uencing the crack propagation direction
are (i) the orientation of the� rst principal stress axes with a given
slip direction (� � I

111h i, NMI= 12%) and (ii) the maximum resolved
shear stress (� �

max, NMI= 10%). All other variables exhibit a
relatively low correlation value. In addition to� � I

111h i and � �
max,

the magnitude of the maximum principal stress (� I) and the
maximum accumulated plastic shear along a slip direction� �

max

� �

have been selected as possible candidates for deriving the
analytical form of the direction of crack propagation. The
magnitude of the � rst principal stress is selected as a natural
complement to the axes of the principal stress, which displays the
largest correlation to the direction of crack growth. Meanwhile
� �

max has been included since the effect of plasticity and
irreversibility ahead of the crack tip have historically been
reported as one of the major drivers of small crack propagation
in ductile materials.7,40–43 Fig. 3 a, b, d shows the almost linear
effect of � �

max, � �
max and � I on the crack propagating direction and a

nonlinear effect of the alignment of the� rst principal stress axis
with a given slip direction, � � I

111h i, displaying an optimum value
around 60° (Fig.3c). Moreover, very similar effects are observed for
� �

max and � �
max, and the only noticeable difference is the less

pronounced slope exhibited by� �
max. The similarity in their trends

is due to the formulation of the Hutchinson� ow rule44 utilized in

Fig. 2 Correlations, as demonstrated based on the normalized mutual information (NMI), between the investigated variables denoted on the
x-axes and the probability of the a direction of crack propagation and b rate of crack propagation. A full description of the variables analyzed
are given in Table1
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the crystal plasticity simulations, which deterministically relates
� �

max and � �
max. Therefore, only a linear term corresponding to� �

max
is included in the formulation to describe the direction of crack
growth. Furthermore, based on the Fig.3c, the effect of � � I

111h i is

described as cos 2� � I
111h i � 60�

� �� �
. Combining the normalized

effects of � �
max, � I, and � � I

111h i, a general functional relationship to
describe the direction of crack propagation can be written as

P Fð Þ ¼f
� �

max

� �
0

;
� I

� Y
; cos 2 � � I

111h i � 60�
� �� �� �

; (2)

where � �
0 is the initial critical resolve shear stress and� Y represents

the yield stress of the material (1000 MPa, in this case).
The terms inside the parentheses in Eq.2 can be combined in

multiple ways. Therefore, to identify an appropriate closed form
expression for the direction of crack propagation, the machine
learning software Eureqa45 is utilized. Speci� cally, Eureqa identi� es
a least square� t of the values ofP(F) computed by the BN model
by using any combination or function of the three terms inside the
parenthesis in Eq.2. Eq. 3 shows the identi� ed driving force
representing the probability of the crack propagating along a
given � 111� direction.

P Fð Þ ¼logistic w1
� �

max

� 0
þ w2

h� Ii
� Y

cos 2 � � I
111h i � 60�

� �� �
þ c

� �
;

(3)

where logistic(X)= 1/(1 + exp(� X)), w1 and w2 are constants
quantifying the weights of the shear and principal stress term,
respectively,c is a parameter identifying the baseline value, and� ��
means that only positive values are retained. The values ofw1, w2,
and c are 10.5, 5, and� 7.09, respectively. The functional form of
Eq. 3 is naturally bounded between 0 and 1. In de� ning the
appropriate direction of crack growth,P(F) = 0.5 has been selected
as the threshold value to identify failure. For a given spatial
position located on the crack front, if more than one slip direction

is classi� ed as failing, then the direction exhibiting the highest
value of P(F) is used to de� ne the crack propagation path.

A comparison between the derived analytical form de� ning the
direction of crack propagation and the experimental results is
presented in Fig.4. The crack propagation directions are depicted
by unit vectors with the origins located at the crack front. For the
experimental results in Fig.4a, c representing crack growth after
56k and 112k cycles, respectively, the blue vectors represent the
physical observations. While in the numerical predictions depicted
in Fig.4b, d, based on the analytical expression in Eq.3, the green
and red vectors correspond to correct and incorrect predictions of
the crack direction, respectively. The dark gray regions behind the
crack front represent the failed portions of the crack surface and
shades of gray ahead of the crack front are proportional to the
residual fatigue life based on the experiment. The histograms in
the inset of Fig. 4b, d summarize the distributions for the
prediction results. Orange tortuous lines represent the GBs
intersected by the crack during the propagation process. Two
different crack snapshots are depicted in Fig.4. In one occurrence,
the majority of the crack front is in the proximity of a GB (cycle 56k
in Fig. 4a, b) and another instance representing a longer crack
(cycle 112k in Fig.4c, d). Based on the resulting histograms, the
predictions at 56k cycles (Fig.4b) represent the worst-case
scenario, as the correct crack direction are only predicted 55%
of the time, since the underlying crystal plasticity model, which
provides data to the BN model, produces a less accurate
description of the micromechanical � elds near the GB. By
construction, crystal plasticity models do not conserve the nature
of the Burgers vector for the mobile dislocations representing
plastic deformation at GBs and therefore limits their accuracy at
the GB.46 By comparison, at cycle 112k (Fig.4d), more than 65% of
the resulting predictions are in accordance with experimental
observations, which is more representative of the overall model’s
ability to forecast the crack path.

Fig. 3 Variation of the probability of the crack propagating along a given slip direction,P(F), (a–d) and of the associated fatigue crack growth
rate, da/dN, (e–g) as a function of the variables displaying strong correlations as shown in Fig.2. Speci� cally, the in� uences of the following
variables are depicted: magnitude of� rst principal stress,� I, misalignment between the principal stress axis and slip direction,� � I

111h i, distance
between the crack front and the grain boundary along a slip direction, GBdist, overall crack length,a, and slip system values of the maximum
shear stress,� �

max, and maximum accumulated plastic shear,� �
max
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The quantitative behavior of the proposed analytical model
describing the direction of crack growth is probed by the use of a
receiver operative characteristic (ROC) curve.47 The ROC curve is
commonly used in the literature to quantify the reliability of a
binary classi� er, by comparing the rate of correct versus incorrect
predictions while systematically decreasing the threshold accep-
tance value of the classi� er, in this case the crack driving force to
describe the direction of crack advancement. In this graph, a curve
overlaid with the 45° line would represent a model response
equivalent to a random choice, i.e., no better than� ipping a coin.
While a � -shape curve embedded in the upper left corner of the
graph (i.e., the point with coordinates (0,1)) would represent a
model with a perfect predictive capability. Figure5 provides a
comparison by means of the ROC curve for the analytical
formulation of the crack direction derived from the present work
(i.e. black line, Eq.3) with the results directly from the BN (i.e., blue
line) and fatigue metrics commonly present in the literature (i.e.,
red curves, see Table2 for a complete description of these fatigue
indicator parameters). The ROC curves provide evidence that the
data-driven analytical form of the crack driving force describing
the crack direction exhibits a more quantitative behavior than the

existing metrics available in the literature. Most of the metrics
from the literature provide similar predictive capabilities and are
relatively close to the random choice; e.g., 45° line. Moreover, the
black line representing Eq.3 from this work is further away from
the random choice line and closer to the upper left corner than
the responses of the existing metrics from literature. This entails
that the proposed crack driving force is signi� cantly more
sensitive to the selected threshold value to describe the crack
front advancement and is physically intuitive. Therefore, the
values calculated via Eq.3 can be directly related to the propensity
of the crack to advance, including the crystallographic direction of
the crack propagation. Further, this suggests that the present
model can capture intragranular crack arrest, which is not
necessarily true for existing metrics from the literature due to
their random predictive behavior. The BN model provides the best
quantitative behavior, because it includes the effects of all mined
variables on the crack propagation direction. Yet, the objective in
the present study is to identify an analytical expression for the
crack driving force for future use by researchers and in
engineering analyses.

Fig. 4 Top view of the crack surface providing a comparison between (a, c) experimental results and (b, d) predictions of direction of crack
advancement obtained via the proposed analytical expression in Eq.3. The arrows represent the direction of crack propagation either
observed from the experiments (blue) or computed (red and green). The green color represents correct predictions and the red color
represent incorrect predictions, which are summarized in the histograms in the inset of (b, d). Orange tortuous lines represents the GBs on the
crack surface. Additionally, the shades of gray represent the residual life on the crack plane (dark gray regions behind the crack front have
already failed). The crack structure and predicted crack directions are shown (a, b) after 56k cycles and (c, d) after 112k cycles
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DISCUSSIONS
The crack driving force describing the direction of short fatigue
crack propagation proposed in this work exhibits distinctive
features but also supports previous works. Noticeably, the
analytical form expressed in Eq.3 does not include the plasticity
ahead of the crack tip, but contains terms for the shear stress
along the crack propagating direction and the principal stress
state. The majority of the existing metrics, describing fatigue
crack propagation direction and rate, available in the literature
Table 2 are proportional to the accumulated microplasticity
ahead of the crack tip21,32–35,48 ; however, this assumption is
not supported by the available data. The comparison of Fig.3b,
e shows opposite effects of� �

max and � I accounts for the effect
of the opening stress on the crack plane. Furthermore, Fatemi
and Socie22 suggested that the ratio between the shear and
opening stress terms is approximately 0.5, which is in
agreement with the ratio of the weights,w2 and w1, in the
present analytical expression of 0.48.

From a crystallographic perspective, the� rst principal stress
for a BCC material is analogous to the opening stress on the
critical plane in a FCC material. In FCC materials, the distribution
of the four available slip planes facilitates the identi� cation of a
critical plane because the opening stress acting on each plane is
distinct. In BCC materials, the availability of 42 potential slip
planes produces a geometrical uncertainty to identify the critical
plane, thus generating a low correlation between� N and the
direction of crack propagation (see Fig.2a). In contrast, by
considering pencil-glide deformation, the effect of an opening
stress on the critical plane can be replicated by the� rst principal
stress magnitude (� I) and orientation with respect to the
propagation direction, � � I

111h i. The fact that the driving force
does not include � N is in accordance with the pencil-glide
approach for small crack propagation in BCC materials that we
previously proposed.38

The slip mediate nature of the small crack propagation
mechanics is supported by experimental and numerical data.
The optimal orientation angle of the� rst principal stress axis

shown in Fig.3c (i.e., 60°) and the absence of plasticity in Eq.3 are
not resulting from the competition or transition between ductile
and cleavage fracture.40,49,50 In BCC materials, brittle fracture may
occur along the {100} cleavage plane aligned with the maximum
principal stress axis.51 The angle between a� 111� slip direction
and the three closest {100} planes is� = 54.7°, which is very similar
to the identi� ed optimal angle in this study, 60° (Fig.3c).
Therefore, to identify if the presence of the principal stress axis is
related to brittle fracture, the correlation between the alignment
of the � rst principal stress axis and the closest cleavage plane

� � I
f 100g

� �
with the crack driving force, thereby negating the

possibility of a brittle fracture mechanism in this scenario. These
results are in accordance with the experiment, in which crystal-
lographic failure is observed (see Fig.1a or ref.37,38), thus building
con� dence in a slip-mediated model to describe the small crack
driving force.

The intragranular crack de� ections present in the analyzed
dataset, as depicted by the orange dashed lines in Fig.6, suggest
the in� uence of the � rst principal stress as a macroscopic driver
for the crack direction. The orientation of the� rst principal stress
axis is in turn, related to the geometry of the crack, strongly
in� uenced by the macroscopic loading conditions, and mediated
by the local grain orientation. At the intragranular length scale,
small cracks propagate in a shear dominated mode due to the
underlying crystallography.11 However, it has been reported that a
small crack can alter its propagation direction according to the
orientation of the remote stress� eld for near threshold stress
intensity factor values.25 When the small crack front excessively
deviates from the average crack plane, the crack de� ects to
restore the global mechanical equilibrium required to satisfy the
remote boundary conditions. The crack de� ections indicated by
the orange lines labeled 3 and 4 in Fig.6 occur at 112k cycles, as
the crack front is located in the core of a grain and at the
maximum distance from the initial notch plane (� z in Fig. 6)
observed during the experimental crack propagation. This
behavior is captured by the model, as shown in Fig.4c, d. Thus

Fig. 5 Comparison of the quantitative behavior of the proposed
analytical form for the direction of crack growth (Eq.3) with (i) the
results directly from the Bayesian network and (ii) analytical fatigue
metrics available in literature (please see Table2)

Fig. 6 The crack surface is colored accordingly to its orientation in
the global reference system. An abrupt change in color represents a
de� ection of the crack during propagation. Black tortuous lines
represent GBs, while the orange dashed lines highlight the locations
of intragranular crack de� ections; � z represents the distance
between the original notch plane (z= 170� m) and the height at
which de� ections 3 and 4 occur (z= 80 � m)
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far, we have discussed the crack driving force to describe the
direction of crack advancement (Eq.3).

A similar analysis was performed to identify the associative
speed of crack propagation and an analytical form for the rate of
crack advancement is derived from the associated BN. From Fig.
2b, the variables exhibiting the strongest correlation with the
crack propagation rate are the overall crack length (a, NMI= 31%)
and the maximum accumulated plastic shear (� �

max, is inversely
correlated to the crack propagation rate (Fig.3f), although this
unexpected result may be a numerical artifact of the crystal
plasticity model or data mining procedure or be due to insuf� cient
data. The overall crack length,a, exhibits an almost quadratic
in� uence on the propagation rate (Fig.3e). The GBdist does not
have a pronounced in� uence on crack propagation rate; never-
theless, the propagation rate constantly increases until the crack
front is a few microns away from the GB, then it decreases (Fig.
3g). This result is in accordance with experimental observation
obtained by Schäf et al. in mild steel30; however, due to its weak
correlation, the GBdist has not been used in the formulation of the
associated propagation rate. The above analysis entails that the
propagation rate needs to include at least two terms: one for
accumulated plastic strain and the other for the in� uence of the
overall crack length.

Eureqa45 was used to identify the functional form of the
analytical expression, yet it should be noted that the expression
for the crack propagation rate is the result of observing only a
small portion of the fatigue life for a single specimen. The
resulting predictions for both the BN and the analytical form of the
rate of propagation are not as promising as those obtained for the
crack direction (Eq.3). Albeit, both models for rate of crack growth
exhibit higher correlations and lower relative errors than the
fatigue metrics available in the literature (Table2). In this
comparison, the values of the surrogate fatigue metrics at the
crack front are assumed to be directly proportional to the crack
propagation rate.21 Fig. 7a, b depict Pearson’s correlation
coef� cient (Eq. 25) and the root mean square relative error
(RMSRE) (Eq.26), respectively, obtained by comparing the
prediction of each model’s fatigue crack growth rate against the
observed experimental data. The BN model and the analytical
form identi� ed with Eureqa show a Pearson’s correlation
coef� cients value of ~0.65, while the fatigue metrics from the
literature possess a correlation value of ~0.25. In general, a
correlation greater than 0.3 is considered signi� cant. Despite the
high correlation values for the BN and the analytical expression for
the crack growth rate, the error analysis shows that neither model

can be considered predictive. In fact, both models exhibit a RMSRE
between 3 and 4 (i.e., 300% and 400%). Thus, the BN and the
analytical expression for the crack growth rate capture the overall
trend in the observed data but cannot provide reliable predictions.
Furthermore, the crack growth rate value determined from the
experiment has larger error associated with it, due to the
resolution of the phase-contrast tomography characterization
and the uncertainty introduced by the crack segmentation
procedure. Thus the location of the crack front is accurate to
±1–2 voxels (±1.4–2.8� m). Additionally, since the phase-contrast
tomography was performed at distinct cyclic intervals, information
about the local crack growth rate at each cycle was not available.
Due to its unreliable predictive capabilities, the analytical form of
the crack growth rate will not be reported here, as it is not
representative of general fatigue crack growth rate behavior. We
believe that the poor predictive behavior for the crack growth rate
originates from examining a single, relatively sparse dataset, in
which the crack only crosses ~12 GBs, thus additional datasets
from multiple samples are necessary to determine an appropriate
analytical expression for the rate of small crack propagation.

Throughout this work, we showed how to utilize machine
learning techniques to distill a useful and simple analytical
expression for the small crack driving force. Two BN models
have been constructed for the direction and speed of fatigue
crack propagation, and the correlations resulting from these BN
models are leveraged to identifyrelevant micromechanical and
microstructure variables that in� uence the small crack driving
force. From these variables, an analytical expression to predict
the threshold and direction of crack advancement (Eq.3) and
the associated speed of crack growth are identi� ed. The
analytical form of the directionof crack growth presents more
reliable predictions than other models in the literature. While
the BN and the analytical form of the rate of crack growth
presents high correlations between predictions and experimen-
tal observations (Fig.7a), the RMSRE (Fig.7b) suggests that the
available data may be insuf� cient to produce a predictive
model. In both cases, care should be taken before application of
these models, as the dataset represents only one experimental
specimen of a speci� c alloy. Although optimism exists, as the
presented methodology is� exible and can be used in a variety
of problems to gain useful insights on the effect of the
governing variables and identify the driving force for complex
engineering problems.

Fig. 7 Comparisons of the fatigue crack growth rate predictions for the Bayesian network, analytical expression proposed in this work, and
common fatigue metrics from the literature via a the Pearson’s correlation coef� cient and b root mean square relative error
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METHODS
The material analyzed in this work is a beta-metastable titanium alloy, Ti-
55531, which was annealed to obtain a full beta microstructure with a
grain size of 65� m. A notch was cut into the specimen via focus ion beam
with geometry of 2 � m in height, 140� m in width, and 25� m in depth.
Diffraction contrast tomography was used to characterize the micro-
structure. Afterwards the sample was subjected to a stress controlled,
cyclic loading, with minimum and maximum stress values of 10 and
320 MPa, respectively (R= 0.03). The fatigue test was interrupted at
maximum load, every 1000 loading cycles, and a phase-contrast
tomography scan was performed in situ to record the crack geometry.
The phase and diffraction contrast tomography reconstructions were
consolidated to create a complete description of the propagating crack
front and the surrounding microstructure. The experiment was performed
at the European Synchrotron Radiation Facility at beamline ID-19. The
reader is referred to refs.14,15 for more details.

The micromechanical� elds not available during the experiment were
computed by means of crystal plasticity simulations, for which results of
diffraction contrast tomography provide the 3D microstructure and the
results of the phase-contrast tomography provide the crack morphology
and evolution during cycling. One crystal plasticity simulation has been
performed for each crack geometry. The adopted computational frame-
work is a parallelized implementation53 of the small strain, elasto-
viscoplastic fast Fourier transform based crystal plasticity solver proposed
by Lebensohn et al.54 For more detail on the simulation setup the reader is
referred to Rovinelli et al.37

Simulations and experimental results are consolidated into a multimodal
dataset. The crack propagation direction and the associated propagation
rate were reconstructed by utilizing a slip direction-based procedure. The
data are collected from the crack front by using a non-local 2D data mining
procedure that is physically based along potential crack propagating
directions as determined from the pencil-glide mechanics within this BCC
material. Within the data mining procedure, the data are collected for a
given slip direction transcribed along a predetermined length of 6.3� m
along the advancing crack front and over a plane with width of 2.8� m.
These values are determined based upon a sensitivity analysis and
informed from the resolution of the associated characterization techniques
and corresponding setup of the crystal plasticity simulations.38 The data
are then averaged over the 2D plane, while point-wise macroscopic
variables, i.e., the alignment of the principal stress axis, are computed by
averaging data over all slip systems belonging to the pencil-glide slip
direction. The micromechanical and microstructural variables analyzed in
the BN framework for correlation with the direction and rate of small
fatigue crack growth are summarized in Table1.

Further, the analytical models for the crack driving force derived in the
present work are compared to common models from the literature,
denoted as fatigue indicator parameters. The fatigue indicator parameters
used for comparisons in the present work are summarized in Table2.21,32–

35

The resulting data are used to train the BNs. To obtain uniform prior
distributions, the data associated with the crack propagation direction
have been randomly sampled, while a strati� cation procedure has been
applied to the ones pertaining to the crack propagation rate. Data
strati� cation is adopted to account for the sparse availability of crack
propagation rate data (~650 data points). In both instances, all the
sampled data are used, while if a crack front location is stationary, it is
sampled only once. A K-fold cross validation procedure is then applied to
check the independence of the BN parameters from the data. Results
showed only a minor in� uence of the data, based on the overall reliability
and precision metrics. For more details about the crack propagation
reconstruction, data mining, and sampling procedures, the reader is
referred to Rovinelli et al.38 The overall crack lengtha is computed
assuming a quarter-elliptic corner crack with major and minor axes of
length a and b, respectively. The minor axis has been recorded from the
reconstructed phase diffraction contrast tomography images. The major
axis has been computed projecting the crack surface on the plane
perpendicular to the loading axis (i.e.,SC) according to Eq. 13.

Two BNs were constructed: (i) one describing the crack propagation
direction and (ii) the other representing the associated crack propagation
rate. The rationale for the construction of two BNs, as opposed to a single
BN, is that the crack propagation direction and rate are in� uenced by
different variables, as shown in Figs.2 and 3. For both BNs, the augmented
Naïve-Bayes structure has been selected55, which assumes conditional
dependence between the crack behavior and all the variables listed in
Table 1, thus allowing the use of machine learning to establish the

conditional dependence between the involved variables. The commercial
software Bayesialab56 was utilized to construct the BNs by identifying the
correlations embedded in the sample data using machine learning.

The correlations embedded in the joint probability tables de� ning the
BN’s structure can be quanti� ed by means of mutual information.57 For
discrete distributions, the mutual information between two variables (i.e.X
and Y) is given by

MI X; Yð Þ ¼
X

x 2 X

X

y 2 Y

p x; yð Þlog2
p x; yð Þ

p xð Þp yð Þ
; (23)

where x and y are the indices specifying the states of the variableXand Y,
respectively, p(x) and p(y) are the marginal probabilities, andp(x, y)
represents their joint distribution. To obtain comparable correlation values
for the analyzed variables in Fig.2, the mutual information have been
normalized by the entropy (H) for the given variable, X representing either
the direction or speed of the propagating crack.

NMI X; Yð Þ ¼
MI X; Yð Þ

H Xð Þ
; (24)

Table 1. List of analyzed variables within the data-driven framework
to describe the small crack driving force

Equation Description

� � I;� II� III
111h i Eq. 4 Misalignment between the principal stress axis

and slip direction

� � I;� II� III
100f g Eq. 5 Misalignment between the principal stress axis

and cleavage plane

� I;II;III Eq. 6 Magnitude of principal stresses

� �
max Eq. 7 Maximum resolve shear stress along a slip

direction

� �
max Eq. 8 Maximum accumulated plastic shear along a

slip direction

� H ¼ 1
3 trace �ð Þ Eq. 9 Hydrostatic stress

� VM ¼
�����������
3
2 � : �

q
Eq. 10 von Mises stress

� triAx ¼ � H
� VM

Eq. 11 Stress triaxiality

� N Eq. 12 Opening stress on a slip plane

a ¼ 4SC
� b Eq. 13 Overall crack length

GBdist Eq. 14 Distance between the crack front and the
grain boundary along a slip direction

Table 2. List of commonly used metrics for the fatigue driving force,
where p is the index identifying the slip plane, k = 0.5 is a material
parameter, and� ·� means that only positive values are retained

max
�

� �j j Eq. 15

max
p

PNs

� ¼1
� �

p

	
	
	

	
	
	 Eq. 16

PN

� ¼1
� �j j Eq. 17

max
p

PNs

� ¼1
� �

p

	
	
	

	
	
	 1 þ k

h� N
p i

� Y

� �
Eq. 18

max
�

� � � �j j Eq. 19

max
p
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� ¼1
� �

p� �
p

	
	
	

	
	
	 Eq. 20

PN

� ¼1
� � � �j j Eq. 21
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p
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� ¼1
� �
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	 1 þ k

h� N
p i

� Y

� �
Eq. 22
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where NMI is the normalized mutual information and
H Xð Þ ¼ �

P

x 2 X
p xð Þlog2 p xð Þð Þ.

To compute the correlations between the numerical predictions (X) and
experimental observations (Y), the Pearson’s correlation coef� cient has
been adopted

� X; Yð Þ ¼
1

N � 1

XN

i¼1

Xi � 	 X

� X

� �
Yi � 	 Y

� Y

� �
; (25)

where N is the number of observation,i is an index representing a speci� c
observation, 	 X and 	 Y represent the mean value of predictions and
observations, respectively, and� X and � Y represent their variance. To
further quantify the predictive ability of the investigated models, the
RMSRE between predictions and observations has been computed:

RMSREX; Yð Þ ¼

������������������������������������
1
N

XN

i¼1

Xi � Yij j
Yij j

� � 2
vu
u
t : (26)

Data availibility
The authors will make the data utilized in this work available, upon request.
It is understood that the data provided will not be for commercial use.
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