H. Ghonem and J. W. Provan, Micromechanics theory of fatigue crack initiation and propagation, Eng. Fract. Mech, vol.13, pp.963-977, 1980.

&. Ihara and . Tanaka, A stochastic damage accumulation model for crack initiation in high-cycle fatigue, Fatigue Fract. Eng. Mater. Struct, vol.23, pp.375-380, 2000.

Y. Liu and S. Mahadevan, Multiaxial high-cycle fatigue criterion and life prediction for metals, Int. J. Fatigue, vol.27, pp.790-800, 2005.

M. D. Sangid, H. J. Maier, and H. Sehitoglu, A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals, Acta Mater, vol.59, pp.328-341, 2011.

S. R. Yeratapally, M. G. Glavicic, M. Hardy, and M. D. Sangid, Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation, Acta Mater, vol.107, pp.152-167, 2016.

S. R. Yeratapally, M. G. Glavicic, C. Argyrakis, and M. D. Sangid, Bayesian uncertainty quantification and propagation for validation of a microstructure sensitive model for prediction of fatigue crack initiation, Reliab. Eng. Syst. Saf, vol.164, pp.110-123, 2017.

C. Laird, The influence of metallurgical structures on fatigue crack propagation, Astm Stp415, vol.415, pp.131-180, 1967.

P. Neumann, Coarse slip model of fatigue, Acta Metall, vol.17, pp.1219-1225, 1969.

P. Neumann, The geometry of slip processes at a propagating fatigue crack-II, Acta Metall, vol.22, pp.1167-1178, 1974.

P. C. Paris and F. Erdogan, A critical analysis of crack propagation laws, J. Basic Eng. (Trans. ASME), vol.85, pp.528-534, 1963.

S. Suresh and R. O. Ritchie, Propagation of short fatigue cracks, Int. Met. Rev, vol.29, pp.445-475, 1984.

D. L. Davidson, K. Chan, R. Mcclung, and S. Hudak, Comprehensive Structural Integrity, vol.4, pp.129-164, 2003.

G. H. Bray, M. Glazov, R. J. Rioja, D. Li, and R. P. Gangloff, Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys, Int. J. Fatigue, vol.23, pp.265-276, 2001.

M. Herbig, 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography, Acta Mater, vol.59, pp.590-601, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00527628

J. Y. Buffiere, E. Ferrie, H. Proudhon, and W. Ludwig, Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray microtomography, Mater. Sci. Technol, vol.22, pp.1019-1024, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00436195

J. Pearl, Bayesian networks: a model of self-activated memory for evidential reasoning, Proc. 7th Conference of the Cognitive Science Society, p.3847802, 1985.

H. Fujii, D. J. Mackay, and H. K. Bhadeshia, Bayesian neural network analysis of fatigue crack growth rate in nickel base superalloys, ISIJ Int, vol.36, pp.1373-1382, 1996.

A. Agrawal, Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters, Integr. Mater. Manuf. Innov, vol.3, 2014.

B. P. Gautham, More efficient icme through materials informatics, 1st World Congress on Integrated Computational Materials Engineering, pp.35-42, 2011.

S. Sankararaman, Y. Ling, and S. Mahadevan, Uncertainty quantification and model validation of fatigue crack growth prediction, Eng. Fract. Mech, vol.78, pp.1487-1504, 2011.

G. M. Castelluccio and D. L. Mcdowell, Assessment of small fatigue crack growth driving forces in single crystals with and without slip bands, Int. J. Fract, vol.176, pp.49-64, 2012.

A. Fatemi and D. F. Socie, A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue Fract. Eng. Mater. Struct, vol.11, pp.149-165, 1988.

A. J. Beaudoin, In situ assessment of lattice strain in an Al-Li alloy, Acta Mater, vol.61, pp.3456-3464, 2013.

J. R. Rice and D. M. Tracey, On the ductile enlargement of voids in triaxial stress fields *, J. Mech. Phys. Solids, vol.17, pp.201-217, 1969.

K. Tanaka, Fatigue crack propagation from a crack inclined to the cyclic tensile axis, Eng. Fract. Mech, vol.6, pp.493-507, 1974.

G. I. Taylor and C. F. Elam, The distortion of iron crystals, Proc. R. Soc. Lond. Ser. A, Contain. Pap. A Math. Phys. Character, vol.112, pp.337-361, 1926.

U. F. Kocks, The relation between polycrystal deformation and single-crystal deformation, Metall. Mater. Trans. 1, pp.1121-1143, 1970.

A. Navarro and E. R. De-los-rios, Short and long fatigue crack growth: a unified model, Philos. Mag. A, vol.57, pp.15-36, 1988.

T. Zhai, A. J. Wilkinson, and J. W. Martin, A crystallographic mechanism for fatigue crack propagation through grain boundaries, Acta Mater, vol.48, pp.4917-4927, 2000.

W. Schäf, M. Marx, and A. F. Knorr, Influence of microstructural barriers on small fatigue crack growth in mild steel, Int. J. Fatigue, vol.57, pp.86-92, 2013.

M. D. Sangid, T. Ezaz, H. Sehitoglu, and I. M. Robertson, Energy of slip transmission and nucleation at grain boundaries, Acta Mater, vol.59, pp.283-296, 2011.

J. D. Hochhalter, A geometric approach to modeling microstructurally small fatigue crack formation: III. Development of a semi-empirical model for nucleation, Model. Simul. Mater. Sci. Eng, vol.19, p.35008, 2011.

A. Rovinelli, R. A. Lebensohn, and M. D. Sangid, Influence of microstructure variability on short crack behavior through postulated micromechanical short crack driving force metrics, Eng. Fract. Mech, vol.138, pp.265-288, 2015.

A. M. Korsunsky, D. Dini, F. P. Dunne, and M. J. Walsh, Comparative assessment of dissipated energy and other fatigue criteria, Int. J. Fatigue, vol.29, 1990.

A. Cerrone, Implementation and verification of a microstructure-based capability for modeling microcrack nucleation in LSHR at room temperature, Model. Simul. Mater. Sci. Eng, vol.23, p.35006, 2015.

H. Proudhon, J. Li, W. Ludwig, A. Roos, and S. Forest, Simulation of short fatigue crack propagation in a 3D experimental microstructure, Adv. Eng. Mater, vol.19, p.1600721, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01599912

A. Rovinelli, Assessing reliability of fatigue indicator parameters for small crack growth via a probabilistic framework, Model. Simul. Mater. Sci. Eng, vol.25, p.45010, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01540936

A. Rovinelli, Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations, J. Mech. Phys. Solids, vol.115, pp.208-229, 2018.

C. R. Weinberger, B. L. Boyce, and C. C. Battaile, Slip planes in bcc transition metals, Int. Mater. Rev, vol.58, pp.296-314, 2013.

, Using machine learning and a data-driven approach to identify A Rovinelli et al

J. R. Rice and R. Thomson, Ductile versus brittle behaviour of crystals, Philos. Mag, vol.29, pp.73-97, 1974.

P. Neumann, New experiments concerning the slip processes at propagating fatigue cracks-I, Acta Metall, vol.22, pp.1155-1165, 1974.

H. Mughrabi, Cyclic slip irreversibilities and the evolution of fatigue damage, Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci, vol.40, pp.431-453, 2009.

M. D. Sangid, Superior fatigue crack growth resistance, irreversibility, and fatigue crack growth-microstructure relationship of nanocrystalline alloys, Acta Mater, vol.59, pp.7340-7355, 2011.

J. W. Hutchinson, Creep and plasticity of hexagonal polycrystals as related to single crystal slip, Metall. Mater. Trans. A, vol.8, pp.1465-1469, 1977.

M. Schmidt and H. Lipson, Distilling free-form natural laws from experimental data, vol.324, pp.81-85, 2009.

J. C. Mach, A. J. Beaudoin, and A. Acharya, Continuity in the plastic strain rate and its influence on texture evolution, J. Mech. Phys. Solids, vol.58, pp.105-128, 2010.

A. J. Hanley and J. B. Mcneil, The meaning and use of the area under a receiver operating characteristic (ROC) Curve, Radiology, vol.143, pp.29-36, 1982.

X. J. Wu, A. K. Koul, and A. S. Krausz, A transgranular fatigue crack growth model based on restricted slip reversibility, Metall. Mater. Trans. A, vol.24, p.1373, 1993.

A. S. Argon, Mechanics and physics of brittle to ductile transitions in fracture, Trans. Asme. J. Eng. Mater. Technol, vol.123, pp.1-11, 2001.

E. Bitzek and P. Gumbsch, Mechanisms of dislocation multiplication at crack tips, Acta Mater, vol.61, pp.1394-1403, 2013.

S. Kohlhoff, P. Gumbsch, and H. F. Fischmeister, Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.64, pp.851-878, 1991.

A. Navarro, E. Rios, and . Rdel, A model for short fatigue crack propagation with an interpretation of the short-long crack transistion, Fatigue Fract. Eng. Mater. Struct, vol.10, pp.169-186, 1987.

A. Rovinelli, H. Proudhon, R. A. Lebensohn, and M. D. Sangid, Assessing the reliability of fast fourier transformation-based crystal plasticity simulations of a polycrystalline material near a crack tip, Comput. Methods Appl. Mech. Eng, 2018.

R. A. Lebensohn, A. K. Kanjarla, and P. Eisenlohr, An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials, Int. J. Plast, pp.59-69, 2012.

J. Cheng and R. Greiner, Comparing Bayesian network classifiers, Proc. 15th Conf. on Uncertainty in Artificial Intelligence, pp.101-108, 2013.

L. Jouffe, P. Munteanu, . Bayesialab, and . Bayesialab,

C. E. Shannon, W. Weaver, and E. Claude, The mathematical theory of information, 1949.