Y. Boureau, J. Ponce, and Y. Lecun, A theoretical analysis of feature pooling in visual recognition, Proceedings of the 27th international conference on machine learning (ICML-10), pp.111-118, 2010.

J. Bradbury, S. Merity, C. Xiong, and R. Socher, Quasi-Recurrent Neural Networks. International Conference on Learning Representations, 2017.

X. Chen, H. Guo, G. Wang, and L. Zhang, Motion feature augmented recurrent neural network for skeleton-based dynamic hand gesture recognition, 2017.

K. Cho, B. Van-merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares et al., Learning phrase representations using rnn encoderdecoder for statistical machine translation, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01433235

E. Cippitelli, S. Gasparrini, E. Gambi, and S. Spinsante, A human activity recognition system using skeleton data from rgbd sensors. Computational intelligence and neuroscience, p.21, 2016.

Q. D. Smedt, H. Wannous, and J. Vandeborre, Skeleton-based dynamic hand gesture recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.1-9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01535152

Q. D. Smedt, H. Wannous, J. Vandeborre, J. Guerry, B. L. Saux et al., Shrec'17 track : 3d hand gesture recognition using a depth and skeletal dataset, 10th Eurographics Workshop on 3D Object Retrieval, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01563505

M. Devanne, H. Wannous, S. Berretti, P. Pala, M. Daoudi et al., 3-d human action recognition by shape analysis of motion trajectories on riemannian manifold, IEEE transactions on cybernetics, vol.45, issue.7, pp.1340-1352, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01056397

G. Devineau, W. Xi, F. Moutarde, and J. Yang, Deep learning for hand gesture recognition on skeletal data, Automatic Face & Gesture Recognition (FG 2018), 2018.
URL : https://hal.archives-ouvertes.fr/hal-01737771

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp.249-256, 2010.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.

S. Hochreiter and J. Schmidhuber, Long shortterm memory, Neural computation, vol.9, issue.8, pp.1735-1780, 1997.

G. Jiuxiang, W. Zhen-hua, and J. Kuen, Recent advances in convolutional neural networks, 2015.

D. Kingma and J. Ba, Adam : A method for stochastic optimization, 2014.

A. Klaser, M. Marsza?ek, and C. Schmid, A spatiotemporal descriptor based on 3d-gradients, BMVC 2008-19th British Machine Vision Conference, pp.275-276, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00514853

J. Knopp, M. Prasad, G. Willems, R. Timofte, and L. Van-gool, Hough transform and 3d surf for robust three dimensional classification, Computer visionECCV 2010, pp.589-602, 2010.

T. Laurent and J. Von-brecht, A recurrent neural network without chaos, 2017.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, pp.2278-2324, 1998.

S. Mitra and T. Acharya, Gesture recognition : A survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol.37, issue.3, pp.311-324, 2007.

P. Molchanov, S. Gupta, K. Kim, and J. Kautz, Hand gesture recognition with 3d convolutional neural networks, Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp.1-7, 2015.

N. Neverova, Deep learning for human motion analysis, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01470466

N. Neverova, C. Wolf, G. Paci, G. Sommavilla, G. Taylor et al., A multi-scale approach to gesture detection and recognition, Proceedings of the IEEE International Conference on Computer Vision Workshops, pp.484-491, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01339262

N. Neverova, C. Wolf, G. Taylor, and F. Nebout, Moddrop : adaptive multi-modal gesture recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, issue.8, pp.1692-1706, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01178733

E. Ohn-bar and M. Trivedi, Joint angles similarities and hog2 for action recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.465-470, 2013.

F. J. Ordóñez and D. Roggen, Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition, Sensors, vol.16, issue.1, p.115, 2016.

O. Oreifej and Z. Liu, Hon4d : Histogram of oriented 4d normals for activity recognition from depth sequences, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.716-723, 2013.

P. Ramachandran, B. Zoph, and Q. V. Le, Searching for activation functions, 2018.

T. Simon, H. Joo, I. Matthews, and Y. Sheikh, Hand keypoint detection in single images using multiview bootstrapping, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.2, 2017.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu, An endto-end spatio-temporal attention model for human action recognition from skeleton data, AAAI, pp.4263-4270, 2017.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout : a simple way to prevent neural networks from overfitting, Journal of machine learning research, vol.15, issue.1, pp.1929-1958, 2014.

G. Strezoski, D. Stojanovski, I. Dimitrovski, and G. Madjarov, Hand gesture recognition using deep convolutional neural networks

A. Truong, H. Boujut, and T. Zaharia, Laban descriptors for gesture recognition and emotional analysis. The visual computer, vol.32, pp.83-98, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01111425

A. Turkin, Tikhonov regularization for long short-term memory networks, 2017.

A. Van-den, S. Oord, H. Dieleman, K. Zen, O. Simonyan et al., Wavenet : A generative model for raw audio, 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al., Attention is all you need, Advances in Neural Information Processing Systems, pp.6000-6010, 2017.

R. Vemulapalli, F. Arrate, and R. Chellappa, Human action recognition by representing 3d skeletons as points in a lie group, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.588-595, 2014.

P. Wang, Z. Li, Y. Hou, and W. Li, Action recognition based on joint trajectory maps using convolutional neural networks, Proceedings of the 2016 ACM on Multimedia Conference, pp.102-106, 2016.
DOI : 10.1145/2964284.2967191

URL : http://arxiv.org/pdf/1611.02447

Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly, 2017.

Z. Xing, J. Pei, and E. Keogh, A brief survey on sequence classification, ACM Sigkdd Explorations Newsletter, vol.12, issue.1, pp.40-48, 2010.
DOI : 10.1145/1882471.1882478

URL : http://www.cs.sfu.ca/%7Ejpei/publications/Sequence%20Classification.pdf

M. Ye, Q. Zhang, L. Wang, J. Zhu, R. Yang et al., A survey on human motion analysis from depth data, Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications, pp.149-187, 2013.

Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, Time Series Classification Using Multi-Channels Deep Convolutional Neural Networks, p.298
DOI : 10.1007/978-3-319-08010-9_33