X. Roynard, J. Deschaud, and F. Goulette, Paris-Lille-3D: a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01695873

N. Time-hackel, L. Savinov, J. D. Ladicky, K. Wegner, M. Schindler et al., Semantic3d.net: A new large-scale point cloud cassification benchmark

, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, volume IV-1-W1, pp.91-98, 2017.

I. Armeni, O. Sener, R. Amir, H. Zamir, and . Jiang, Ioannis Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic parsing of large-scale indoor spaces, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 2016.

L. Landrieu and M. Simonovsky, Large-scale point cloud semantic segmentation with superpoint graphs, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01801186

P. Lyne, C. B. Tchapmi, I. Choy, J. Armeni, S. Gwak et al., Segcloud: Semantic segmentation of 3d point clouds, 2017.

A. Boulch, B. L. Saux, and N. Audebert, Unstructured point cloud semantic labeling using deep segmentation networks, Eurographics Workshop on 3D Object Retrieval, vol.2, 2017.