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Abstract: In France, buildings account for a significant portion of the electricity 

consumption (around 68 %), due to an important use of electrical heating systems. This results in 

high peak load in winter and causes tensions on the production-consumption balance. In view of 

reducing such fluctuations, advanced control systems (including the Model Predictive Control 

framework) have been developed to shift heating load while maintaining indoor comfort and taking 

advantage of the building thermal mass. In this paper, a framework for developing optimisation-

based control strategies to shift the heating load in buildings is introduced. The balanced truncation 

method and a time-continuous optimisation method were used to develop a real-time control of the 

heating power. These two methods are well suited for control problems and yield precise results. The 

novelty of the approach is to use reduced models derived from advanced building simulation 

software. A simulation case study demonstrates the controller performance in the synthesis of a 

predictive model-based optimal energy management strategy for a single-zone test building of the 

“INCAS” platform built in Le Bourget-du-Lac, France, by the National Solar Energy Institute (INES). 

The controller exhibits excellent performance, reaching between 6 and 13 % cost reduction, and can 

easily be applied in real-time. 
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1. INTRODUCTION 

Over 68 % of the final electricity consumption in France can be attributed to the building 

sector [1]. In addition to being a large producer of greenhouse gases emissions, buildings represent a 

key component of peak electricity demand during winter periods, mainly due to heating systems. 

Consumption peak periods are difficult to handle and may disrupt the electricity production-

consumption balance. Electricity producers and grid operators generally invest in peak production 

facilities and distribution capacities incurring additional economic and environmental costs. 
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An alternative to this solution consists in developing smart electric grid and implementing 

smart programs of energy management. Demand response (DR) strategies have an appealing 

potential to reduce electricity peak demand. These techniques aim at modifying consumers’ demand 

for energy through various methods such as financial incentives or information. A key factor in the 

growth of DR strategies (as peak shifting and load levelling strategies) is the availability of energy 

storage capacities to shift electricity consumption from peak to off-peak periods. Active and passive 

thermal energy storage can be used to meet such objectives. On the one hand, heating, ventilation 

and air conditioning (HVAC) systems can be designed with tanks that store energy (e.g. chilled or hot 

water). For instance, [2] proposed a strategy for the optimal control of building HVAC systems with 

chilled water thermal energy storage. They proposed a hierarchical Economic Model Predictive 

Control (E-MPC) framework based on different time scales (scheduling and control perspectives) and 

decision variables. In the same way, [3] developed an optimisation algorithm for load-shifting of large 

sets of electric hot water tanks. On the other hand, the thermal mass of the building can be used to 

retain and release energy [4]. For instance, [5] showed that it is possible to shift the load of heating 

to off-peak hours in the case of highly insulated buildings with high thermal mass. Finally, passive 

building thermal capacitance and active thermal energy storage systems can be both combined 

requiring a coordination of the charge and discharge events [6,7]. 

The peak electricity demand can be decreased by developing new advanced control 

techniques accessible to building designers and operators. The optimisation-based control strategies 

have consequently to be able to coordinate (taking into account the uncertainty) the charge and 

discharge events with external factors such as energy prices, occupancy and weather. The use of 

Model Predictive Control (MPC) paradigm is useful owing to its ability to address an energy 

management optimisation problem while satisfying constraints (e.g. thermal comfort) and 

accounting for forecast of disturbances (e.g. weather forecast). This approach poses a number of 

significant challenges. In addition to imposing a more complex IT infrastructure (hardware and 

software), MPC implementation requires an accurate building model that can be run rapidly and 

repeatedly in real-time. However, advanced building simulation software (e.g. EnergyPlus or TRNSYS) 

require too much computation time for online calculations. To overcome this problem, several 

approaches have been employed to identify simplified building models which can be used in the MPC 

framework. A number of articles discuss the use of resistance-capacitance (RC) network models [8], 

data-driven methods such as neural network models [9], or the identification of linear state-space 

models based on data obtained from detailed simulation software [10]. Although these models are 

convenient for MPC implementation, they may be inaccurate when the operating conditions deviate 

from those used during the identification process. An alternative is to use reduced models derived 

from advanced building simulation software which is the main contribution of this study. 

In this paper, we introduce a framework for developing optimisation-based control strategies 

to shift the heating load in buildings. Section 2 introduces the dynamic building energy model and 

the applied model reduction technique. The optimisation algorithm used to solve the optimal control 



problem is described in section 3. Section 4 explains in detail the MPC design and implementation. 

Finally, in section 5, simulation results are presented and discussed. 

2. REDUCED MODEL FOR MPC 

2.1 Building description 

The case study is a two-storey experimental passive house of the “INCAS” platform built in Le 

Bourget-du-Lac, France, by the National Solar Energy Institute (INES). The house is made of shuttered 

concrete (15 cm thick) with external insulation (20 cm of extruded polystyrene), and has a heavy 

ground floor (24 cm concrete slab and 20 cm external insulation), a heavy intermediate floor (16 cm 

concrete screeds and girders and 12 cm overlaying concrete slab floor) and a lightweight ceiling 

(1 cm gypsum board and 40 cm of glass wool). The building’s facades include double glazing (mainly 

on the south facade) and triple glazing on the north facade. The total living surface area is 89 m². 

Thanks to careful design and construction phases, thermal bridges and air infiltration are low. The 

building has an electrical heating system. The mechanical ventilation corresponds to 0.6 air change 

per hour (ACH) to guarantee sufficient air renewal. A heat exchanger allows heat recovery from 

exhaust air with an efficiency of 90 %. In order to reduce calculation time of the optimisation 

algorithm, the house was modelled as a single zone. 

The stochastic model developed by [11] was used to generate an occupancy scenario. 

Realistic inhabitants’ characteristics and behaviours are represented through a probabilistic approach 

based on multiple statistical data (e.g. French socio-demographic and time-use survey but also 

measurement campaigns). For each simulation, a stochastic process sets users’ characteristics and 

presence scenarios depending on the household socio-demographic attributes. From several 

hundred simulations of this model, an average occupancy scenario was created. We considered a 

three people household with high performance appliances and lighting. Figure 1 presents the internal 

gains average scenario in the building during a winter week derived from a sample of 300 generated 

scenarios.  



 

Figure 1: Generated average internal gains scenario in a dwelling occupied by three inhabitants during a 

winter week 

2.2 Thermal model of the building 

In this study, the dynamic building energy software COMFIE, developed by [12], was used to 

obtain the thermal model of the building. This model relies on the concept of thermal zone which is a 

part of the building (generally comprising one or more rooms) with a homogeneous temperature. For 

each zone, each wall is divided in meshes according to the finite volume technique, each mesh being 

associated with a uniform temperature and a thermal capacity. To ensure this hypothesis, the mesh 

size is finer as the mesh is close to the inner surface. Another mesh is added for the zone’s air and 

furniture. Energy conservation equations are applied on each mesh within the building [13]: 

�� ��� ��� � �	
 � �	� (1) 

with 

• �� the thermal capacity of the mesh, 

• �� the temperature of the mesh, 

• �	
 the solar and internal gains (due to heating, occupancy and other appliances), 

• �	� the linearised heat losses by conduction, convection and radiation. 

Repeating energy balance on each mesh leads to a linear time-invariant system [14,15], non-

linear phenomena and variable parameters (ventilation, thermal resistance added due to 

intermittent use of shutters, etc.) being integrated in the driving forces (the state-space 

representation is considered in this study): 
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with 

• 
 ∈ ℝ� (� � 28 in this study) the state of the building (the energy stored in each 
mesh), 

• � ∈ ℝ� (� � 10 in this study) the driving forces (climate parameters, heating, 
etc.), 

• � ∈ ℝ the zone temperature (accounting for air and wall surfaces), 

• �, �, �, � the state, input, output and feedforward matrices, respectively. 

The occupancy schedule of the building which defines the emission of heat by the inhabitants 

and appliances, and the thermostat setpoint influencing the heating equipment, as well as the 

climatic data influencing heat losses and solar gains must be specified. The data regarding house 

occupancy and weather are included in the driving forces vector �. On top of several validation 

studies [16], the model’s reliability was studied in the particular context of a high performance 

houses and is comparable to international reference models [17–19]. 

2.3 Model reduction 

In view of application of optimisation methods, the high order linear model (2) (obtained by 

the dynamic building energy software COMFIE) was reduced. Its original state dimension (order 28) 

was too large to allow a fast convergence of the optimisation algorithm. Fast convergence of the 

optimisation algorithm was achieved by reducing the high order of the system (2). To do so, several 

methods exist such as the modal reduction [20], the proper orthogonal decomposition [21], or the 

singular value decomposition [22]. In our case, the balanced truncation method [23] was selected 

because it is an efficient method that presents a good reliability and it is commonly used for control 

applications [24]. 

Identification of the order of the reduced model requires the determination of the balanced 

reduced states which are completely controllable and completely observable. In this study, the order 

reduction had to be smaller than or equal to four to obtain a completely controllable and observable 

model. In Table 1, the various time constants of the reduced order are reported. One can notice that 

these thermal building models clearly have well separated time constants.  



Table 1: Value of the time constants of the four reduced models 

Reduction order 1 2 3 4 

Time constants 16 days 
17 days 

13 minutes 

17 days 
1 hour 

8 minutes 

17 days 
20 hours 

44 minutes 
6 minutes 

In order to calculate the optimal control of the heating power, it is essential to consider a 

reduced order model which warrants a numerical equivalence with the reference model. To 

determine the suitable reduced order model (which is a compromise between accuracy and 

calculation time), frequency and time-domain analyses were carried out. For the frequency analysis, 

three driving forces were considered: the heating power (which is the control variable), the outdoor 

temperature and the solar radiation through windows. 

Figure 2 shows the Bode diagram for the transfer functions (heating power → indoor 

temperature) calculated with the reference model (blue line) and with the 1st and 2nd order models 

(red and green lines respectively). Substantial differences (both in magnitude and phase) can be 

observed between the 1st order model and the reference model. For example, a delay can be 

observed for frequencies between 10-6 Hz and 10-2 Hz (corresponding to time periods between one 

minute and several days). This reduced model was consequently not able to correctly represent the 

evolution of the indoor temperature. The 2nd order model presented a different behaviour. For 

example, it had a phase delay for time periods between one and several minutes and a phase 

advance for time periods corresponding to several hours. Thus, this reduced model tended to 

underestimate the indoor temperature variation for heating power variations over a few minutes 

and to overestimate the indoor temperature variation over several hours. Consequently, the 1st and 

2nd order models did not qualify as relevant reduced order models. 



 

Figure 2: Frequency response of the reference and 1
st

 and 2
nd

 order models to the heating power 

Figure 3 illustrates the Bode diagram for the transfer functions (heating power → indoor 

temperature) calculated with the reference model (blue line) and with the 3rd and 4th order models 

(red and green lines respectively). An excellent agreement can be observed. Similar results (Figure 4) 

were obtained for the other transfer function (outdoor temperature → indoor temperature). 
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Figure 3: Frequency response of the reference and 3
rd

 and 4
th

 order models to the heating power 

 

Figure 4: Frequency response of the reference and 3
rd

 and 4
th

 order models to the outdoor temperature 

Some differences (Figure 5) can be observed for the transfer function (solar radiation through 

windows → indoor temperature). The reduced models had a phase advance for time periods 
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between one second and several hours. From a physical point of view, this mistake can be explained 

by the inability of the reduced models to faithfully represent the impact of solar radiation through 

windows. 

 

Figure 5: Frequency response of the reference and 3
rd

 and 4
th

 order models to the solar radiation 

The frequency analysis of the reference model and the reduced models of order 3 and 4 

presented a good concordance. To choose between the reduced models (3rd and 4th order models), a 

time domain analysis was carried out. We compared the zone temperature predicted by the 

reference model and by the reduced models while the building was in free-running mode (i.e. not 

heated). Three-months (from January to March) Typical Meteorological Year-type (TMY) data from 

Chambéry (France), a city near Le Bourget-du-Lac, were considered. Figure 6 illustrates the indoor 

temperature, on the day when the root-mean-square error (RSME) was the highest for the 3rd order 

model, predicted by the reference model and by the reduced models. A good agreement can be 

observed, especially for the 4th order model. Furthermore, the RMSE of the 3rd and 4th order models 

on the three months were small: respectively 0.0368°C and 0.0082°C. Consequently, as the results of 

these reduced models were close, the 3rd order model was chosen because it represented a 

reasonable compromise between the accuracy of the results and calculation time. 
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Bode plot: solar radiation
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Figure 6: Indoor temperature predicted by the reference and reduced models on the day when the RMSE was 

the highest 

3. OPTIMAL CONTROL PROBLEM 

In the Demand Response context, the energy management optimisation in individual houses 

consists in solving a state and input constrained optimal control problem. This section exposes a 

methodology to solve it. 

We consider the following constrained optimal control problem: 

�!"#∈$∩& '(��� � ) ℒ+
���, ����,��-.
/ 0 (3) 

where ℒ is a smooth real-valued function of its arguments , under the following dynamical 

constraints:  


	# � 1+
#���, ����,	; 				
�0� � 
/ (4) 

corresponding to the balanced reduced state-space representation of the time-invariant linear 

system (2), where 
��� ∈ ℝ4 and ���� ∈ ℝ� are respectively the state and the control (in this study " � 3 and � � 10), and 
/ is the initial state of the building (which can be estimated by a state 

observer). A solution of (2) with input � is noted 
#. The set 6 ∩ 7 is defined by control and state 

constraints considering inequality state constraints and control constraints under the form ���� ∈ ∁ 

(where ∁ is a bounded closed convex set). The optimal control problem consists in finding the control u and its associated states 
# solution of (4) and minimising the integral cost (3) while respecting 
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state and control constraints. An interior penalty method was used to solve this constrained optimal 

control problem. 

3.1 Interior penalty algorithm 

The main idea driving penalty methods is to consider an augmented cost constructed by 

adding a term, called penalty function, to the original cost function. This penalty function has a 

diverging behaviour when the constraints are approached by a solution. Thus, penalty methods 

attempt to approximate a constrained optimal control problem with a series of unconstrained 

optimal control problems and then apply standard techniques to obtain solutions. Satisfaction of the 

constraints is favoured by the augmented cost and depends on the weight of the penalty function.  

The algorithm used in this study is based on an interior penalty method, with penalty 

functions :; and :# and a generalised saturation function <�=� � � (allowing to remove the 

constraint) to formulate the following problem: 

�!">∈�?+@/,-.A,ℝB,) ℒ C
D�>�, <�=�E �� +-.
/ F ) +:;+
D�>�, + :#�=�,��-.

/  (5) 

where :; and :# are the state penalty function and the control penalty function respectively. [25] 

showed that this problem generated, as F → 0, a sequence of solutions converging to a solution of 

the constrained optimal control problem (3). Each solution of the sequence is readily characterised 

by the calculus of variations as the problem (5) is unconstrained. More precisely, the conditions of 

the Pontryagin Minimum Principle [26] are exploited. Algorithm description, convergence results and 

definition of penalty functions can be found in [25]. To solve the penalised problem (5), the 

Hamiltonian of the problem is defined (where G ∈ ℝ4 is the adjoint vector): 

HI+
D�>�, =, G, � 	ℒ C
D�>�, <�=�E + 	F@:;+
D�>�, + :#�=�A + G-1�
D�>�, <�=�� (6) 

3.2 Application 

3.2.1 Constrained optimal control problem 

In this study, a state and input constrained optimal control problem was to be solved. The 

goal of the optimisation was to minimise the heating cost of a building by determining the optimal 

trajectory with constraints on thermal comfort (state constraints) and heating power (control 

constraints). 

The classical linear state space representation was used for the 3rd order model where the 

driving forces vector � was divided into the heating power J (the control variable) and the vector � 

representing the influence of the outside temperature, the solar fluxes, the occupancy and other 

appliances: 




	��� � �
��� + �KJ��� + �L�������� � �
���  (7) 

with 

• 
 the state of the building, 

• � the indoor temperature, 

• �K and �L the input matrices related to J��� and ����. 
An acceptable level of comfort was ensured by maintaining indoor temperature between 

19°C (��M4) and 24°C (��NO). The heating power could vary between 0 W (J�M4) and 5000 W (J�NO). 

Thus, the finite-horizon decision problem took the following form: 

�!"K ) �PQPR���J�����-.
/  (8) 

with 

• �PQPR the dynamic electricity cost, 

• �S the duration of the optimisation period. 

State and control constraints were defined as follows: 

��M4 ≤ ���� ≤ ��NO (9) J�M4 ≤ J��� ≤ J�NO (10) 

In the Demand Response context, a time-of-use pricing was considered to shift the electricity 

demand. Adapted from the current prices in France by adding peak hour rates allowing load shifting, 

the electricity prices considered in this study are shown in Table 2. 

Table 2: Electricity prices 

 Off-peak hours Peak hours High peak hours 

Hours 12 a.m. to 9 a.m. 
9 a.m. to 5 p.m. 

10 p.m. to 12 a.m. 
5 p.m. to 10 p.m. 

Cost per kWh (€) 0.0864 0.1275 0.255 

3.2.2 Numerical resolution of the constrained optimal control 

problem 

To solve the constrained optimal control problem, the interior-point algorithm described in 

[25] was used. In this study, to remove the input constraint, the following change of variables was 

considered [27]: 

J � <�=� � J�NO U VW>1 + VW>X , Y > 0 (11) 

Thus, the Hamiltonian of the penalised optimal control problem was: 

HI�
, =, G� � �PQPR<�=� + G-��
 + �K<�=� + �L��+ F@:;��
 � ��M4� + :;���NO � �
� + :# ∘ <�=�A (12) 



The adjoint vector G must satisfy the following differential equation: 

�G�� ��� � �\HI\
 �
, =, G� � ��-G��� � F�-@:;]��
��� � ��M4� � :;] ���NO � �
����A (13) 

where :;]  is the derivative of the function :; defined as: 

:;�^� � _ ^`a.a	∀	^ > 00						d�ℎVfg!^V (14) 

The algorithm used to solve the constrained optimal control problem was the following: 

• Step 1: Initialise the continuous functions 
��� and G��� such that the initial value �
��� ∈ [��M4, ��NO] for all � ∈ [0, �S]. At first, G��� can be chosen identically 

equal to zero. Set F � F/. 

• Step 2: Compute =I∗ � sinh`a C� opqpr�-�stu�-�vwI E the analytical solution of xyzx> � 01 where we set :#] ∘ <�=� � sinh�=�. 
The optimal solution JI∗��� � <�=I∗���� is given using equation (11). 

• Step 3: Solve the 2	" differential equations 

{||
}
||~

�
����� � �
��� + �KJI∗��� + �L����
JI∗��� � < Usinh`a U��PQPR��� + G-����KF XX

�G����� � ��-G��� � F�-@:;]��
��� � ��M4� � :;] ���NO � �
����A
 

with the following boundary constraints: 
�0� � 
/ and G+�S, � 0. 

• Step 4: Decrease F, initialise 
��� and G��� with solutions found at Step 3 and 

restart at Step 2. In this study, the sequence (F4) was chosen such that F4 � 10` ��� 
with n � -90 ... +70. 

The presented algorithm was implemented in Matlab R2012b, and run on a Intel Core i7 

(2.8 GHz) PC with 16 GB of RAM, using a single core. 

3.2.3 Sensitivity analysis 

In this study, the goal of the Model Predictive Control (MPC) was the resolution of the 

constrained optimal control problem that is repeated periodically (controller time step) over a 

prediction horizon. For MPC applications in buildings, the controller time step may depend on the 

frequency of new information availability, such as weather forecast, building state estimation, or 

changes in occupancy. In order to develop an as general as possible MPC, the controller time step 

was set at 24 hours.  

The choice of the prediction horizon of the optimal control problem corresponded to a 

compromise between precision and calculation time. The sensitivity of the calculated optimal control 
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xyzx> � 0 implies �PQPR��� + G-����K + F:#] ∘ <�=� � 0 



to the prediction horizon was evaluated. For each prediction horizon tested, the sensitivity analysis 

consisted in comparing the first 24 hours of the calculated optimal control with a reference. In the 

following, the reference was the first 24 hours of the calculated optimal control with a prediction 

horizon of 3 weeks (horizon higher than the largest time constant of the 3rd order model). Two 

indicators were used in the comparison: 

• the mean absolute deviation (MAD) between control (the heating power) 
calculated by the reference and control calculated with a tested prediction 
horizon, 

• the cost variation. 

Prediction horizons comprised between one to five days were tested. Local weather data 

measured at Chambéry (FR) airport, which is 300 metres away from the building, were used. This 

local weather data corresponded to measurements from January 1st to April 29th, 2012. To carry out 

the sensitivity analysis, three periods were identified in these weather data: a cold and sunny period, 

a cold and cloudy period, and a transition period. Meteorological characteristics (on the first five days 

of each period) are listed in Table 3. The input series of outdoor conditions are presented in 

appendix A. 

Table 3: Weather data 

 
Cold and cloudy 

period 
Cold and sunny 

period 
Transition period 

Minimal temperature (°C) -6.4 -14.0 1.4 

Average temperature (°C) 0.0 -5.2 5.7 

Maximal temperature (°C) 5.2 0.9 11.3 

Average global horizontal 
irradiance (W.m-2) 

60 63 44 

Maximal global horizontal 
irradiance (W.m-2) 

342 456 297 

The reference and the results of the sensitivity analysis are shown respectively in Table 4 and 

Table 5. We can observe that a prediction horizon of three days or less was not enough. Indeed, 

significant differences in the calculated control for each prediction horizon as well as the associated 

cost were observed. For example, a cold snap appeared during the cold and sunny period and more 

precisely the successive days were getting colder and colder. In this case, the optimisation algorithm 

(with a prediction horizon of less than two days) was unable to anticipate the next climatic variations 

which led to an underestimation of the need for overheating the building explaining the lower cost 

for the first 24 hours. However, the global cost during the cold snap would be higher due to the lack 

of anticipation. During the cold and cloudy period and transition period, similar findings can be noted 

explaining the results. Although the cost was lower for the first 24 hours, the lack of anticipation 

would lead to a higher global cost for the 3 weeks. Optimisation results with a prediction horizon of 

four days were close to the reference for each period. Furthermore, adding a day in the prediction 

horizon led to a marginal improvement (considering the mean absolute deviation).  



Following this sensitivity analysis, a prediction horizon of four days was considered in this 

study which was a compromise between accuracy and calculation time. However, it is essential to 

bear in mind that this choice faces practical considerations such as the reliability of weather 

forecasts. 

Table 4: Reference results 

 Reference cost (€) Calculation time (minutes) 

Cold and cloudy period 0.37 85 

Cold and sunny period 2.64 71 

Transition period 0.57 75 

Table 5: Sensitivity analysis results 

 Cold and cloudy period Cold and sunny period Transition period 

Prediction 
horizon 

MAD 
(W) 

Cost 
variation 

(%) 

Calculation 
time 

(minutes) 

MAD 
(W) 

Cost 
variation 

(%) 

Calculation 
time 

(minutes) 

MAD 
(W) 

Cost 
variation 

(%) 

Calculation 
time 

(minutes) 

1 day 98 -121 3 824 -26 3 151 -79 3 

2 days 81 -83 5 58 -4 5 119 -57 5 

3 days 40 -29 10 1.3 -0.1 8 73 -33 9 

4 days 3 -1.5 15 0.4 -0.01 10 19 -7 12 

5 days 0.4 -0.06 16 0.3 -0.01 13 10 -3 14 

4. MPC DESIGN AND IMPLEMENTATION 

MPC design and implementation raises several difficulties as the state estimation of the 

building model and the design of a low level controller which ensures tracking of setpoints despite 

disturbances (such as imperfect weather or occupancy forecasts). 

4.1 State estimation 

Knowing the initial state (
�0� � 
/) is necessary to solve the optimal control problem. In 

our case, the building state could not be determined by direct observation (such as temperature 

measurements). Therefore a state observer model (Luenberger observer), derived from the system 

(7), was used to reconstruct the system state [28]. The main objective was to reconstitute an 

estimate 
���� of the state 
��� by only measuring the output ���� and inputs J��� and ����. The 

error dynamic of such observer is thus: 

�VO����� � �� � ���VO��� (15) 

where VO��� � 
��� � 
���� and � is the observer gain. 

The problem is to ensure asymptotic convergence towards zero of the observer error, which means 

that the observer gain is chosen such that the eigenvalues of the matrix A � LC are in the left half 



plane. To place the poles and to choose the observer gain, Matlab R2012b was used. A trade-off was 

necessary between high bandwidth observers (very efficient for estimation but noise sensitive) and 

low bandwidth ones (slower but less noise sensitive). In this case study, a four days convergence 

towards zero of the observer error was considered. Consequently, to determine the initial condition 

of the optimal control problem, it was sufficient to use the driving forces measurements of the 

previous four days. 

4.2 PI tracking trajectory 

The resolution of the optimal control problem gives the optimal trajectory to follow, noted C��PS���, J�PS���E. In practice, some differences can be noted between the reference trajectory and 

the real trajectory. They can be caused by modelling errors or forecast errors (weather, occupancy, 

etc.). Therefore, a feedback must drive the state to the reference trajectory asymptotically. More 

precisely, the problem is to calculate the correction ∆J caused by the error ∆� in order to follow the 

reference trajectory. This tracking problem can be solved by using a controller.  

The proportional integral (PI) controller was used. The main idea was to add a bias term 

(corresponding to J�PS���) in the PI controller. Thus, the final form of the controller algorithm is: 

� ∆���� � ��PS��� � ��PN����
JR�4��� � ��� UJ�PS��� + � '∆���� + 1�M) ∆������

-
/ 0X (16) 

where ��� is a saturation function ensuring respect of control constraints, � is the proportional gain 

and �M is the integral time. The interest of this formulation is twofold. On the one hand, variations in 

the reference trajectory (transition phase) are better handled with the bias term. On the other hand, 

the feedback part compensates model or forecast errors. 

4.3 MPC development 

The model predictive controller was implemented and tested in a simulation case study 

focused on the heating management optimisation. The performance of the proposed energy 

management approach was simulated using the non-reduced building model (modeled by the 

COMFIE software) acting as a proxy of the real building, taking into account non-linear phenomena 

(especially ventilation). The model predictive control process developed in this study corresponded 

to a four steps process (Figure 7). 

The first step is the initialisation where a constant heating setpoint (for example 19°C) is 

considered. The objective is two-fold. The first goal is to use the COMFIE software to model the 

building. The balanced truncation method is then used to reduce the reference model. The second 

objective is to collect data necessary to estimate the initial state of the building (step 2). Because of 



the convergence of the error observer (around 4 days in our case study), it was necessary to have 4 

days data of inside temperature, heating power and driving forces (weather data and occupancy). 

Following the initialisation, the current state of the building is estimated during the second step. 

Thanks to the data collected at step 1, and the reduced order model of the building, the Luenberger 

observer, based on the dynamic of the reduced model, is used to estimate the state of the building. 

This stage is necessary to determine the initial conditions of the optimal control problem (step 3). 

From the state of the building, the optimal control problem can be solved by using the optimisation 

algorithm presented in § 3.2.2, and thus an optimal set of heating power over 4 days (prediction 

horizon) is obtained. During this stage, the reference heating power and the reference trajectory of 

the inside temperature are calculated. At step 4, the first 24 hours (control horizon ts) of the optimal 

control calculated over 4 days at step 3 is applied to the building. The proportional integral (PI) 

controller (defined at the § 4.2) was used to ensure that the reference trajectory was followed. 

Indeed, modelling errors or forecast errors may cause some differences between the reference 

trajectory and the real trajectory. During this stage, the inside temperature and driving forces are 

measured. Finally, at the end of the 24 hours period, the loop is closed and the current state of the 

building is estimated thanks to collected measurements: the inside temperature, the heating power 

calculated by the PI controller, and the driving forces (weather data, occupancy). This estimated state 

is used to calculate the optimal control for the next day (step 3). 



 

Figure 7 : MPC flowchart 

5. RESULTS 

The objective of the simulation case study was to shift the heating load in the building. The 

model predictive controller was tested to control the heating system during a cold week 

corresponding to measurements from February 2nd to February 8th 2012 (Figure 8) when the 

electricity demand was at its highest. 

The reliability of the MPC was assessed by performing a robustness analysis. The goal was to 

evaluate the impact of forecasting errors (weather and occupancy) on the heating control strategy 

calculated by the MPC, and to assess the MPC’s behaviour in more realistic conditions. In this case 

study, no measurement errors were taken into account. This is a limitation which could be 

investigated in a future study. To compute the MPC, a prediction horizon of four days and a control 

horizon of one day were used. 

Two simulation cases studies were considered which differed in the occupancy scenario used 

during the simulation. The two occupancy scenarios were extracted from the average statistical 

scenario generated using the stochastic occupancy model (§ 2.1). They modelled two families (as a 

reminder, a three people household with high performances appliances and lighting) with a low 

(respectively high) electricity consumption due to appliances and lighting (identified by Family 1 and 



Family 2 respectively). The Family 1 (respectively Family 2) consumed 17 % less (respectively 16 % 

more) electricity than the average statistical scenario. Figure 9 presents the internal gains for each 

occupancy scenario. 

The following indicators were used to evaluate the MPC’s performances: 

• the cumulative cost due to heating consumption and electricity appliances, 

• the percentage of heating energy consumption which is load shifted during high 
peak hours, compared to a 19°C constant temperature setpoint strategy, 

• the percentage of heating energy consumption which is load shifted during peak 
hours, compared to a 19°C constant temperature setpoint strategy. 

 

Figure 8: Climatic conditions for the studied period 

 

Figure 9: Internal gains for each occupancy scenario 

For each case study, four control strategies were tested. Firstly, a reference scenario with a 

19°C constant temperature setpoint strategy was considered with the actual weather and occupancy 

scenarios. This strategy enabled us to evaluate the electricity demand during a cold week. Secondly, 

the theoretical MPC was tested, which was defined as optimal control with perfect knowledge of all 
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disturbances acting upon the building. This control strategy was used to determine the performance 

limit of MPC, in the ideal case of perfect weather prediction and perfect occupancy prediction 

(Family 1 or Family 2 according to the case study). Thirdly, the MPC with an underestimation of 

temperature and solar radiation forecasts (weather forecasts) and using the average statistical 

scenario for occupancy forecasts was examined. Fourthly, the MPC with an overestimation of 

weather forecasts and using the average statistical scenario for occupancy forecasts was tested. The 

last two MPC simulations enabled us to evaluate the impact of occupancy and weather forecasts 

errors on the MPC’s performance. The occupancy and weather forecasts considered for each case 

study are listed in Table 6. 

Table 6: Occupancy and weather forecasts for each control strategy 

Case study 1: Family 1 occupancy 

 MPC (theoretical) MPC (underestimation) MPC (overestimation) 

Outdoor temperature 
forecasts 

True value True value � 1°C True value + 1°C 

Global horizontal 
radiation forecasts 

True value True value � 20 % True value + 20 % 

Occupancy forecasts 
Family 1  

(low electricity 
consumption) 

Average statistical 
scenario 

Average statistical 
scenario 

Case study 2: Family 2 occupancy 

 MPC (theoretical) MPC (underestimation) MPC (overestimation) 

Outdoor temperature 
forecasts 

True value True value - 1°C True value + 1°C 

Global horizontal 
radiation forecasts 

True value True value - 20 % True value + 20 % 

Occupancy forecasts 
Family 2  

(high electricity 
consumption) 

Average statistical 
scenario 

Average statistical 
scenario 

As an example, indoor temperature variations for case study 2 and the heating power 

calculated by the different MPC are presented respectively in Figure 10 and Figure 11. The indoor 

temperature was always within the range of temperature constraints [19°C, 24°C]. As expected, 

when the weather forecasts data were overestimated, temperatures were slightly lower. The reverse 

was observed when the weather forecasts data were underestimated. 



 

Figure 10: Evolution of indoor temperature for case study 2 

 

 

Figure 11: Heating power calculated for case study 2 

Quantitative results are presented in Tables 7-8. For each case study, the theoretical MPC 

had a lowest cumulative cost than the reference scenario (13 % or 7 % less according to the case 

study). Furthermore, the heating power was mainly used during the off-peak periods. For instance, 

100 % of the electricity consumed during high peak hours for heating was load shifted with the 

theoretical MPC. This was also true during peak hours, where almost 100 % of the electricity 

consumption was load shifted for each case study. With a 19°C constant temperature setpoint 

strategy (reference scenario), the electricity consumed during peak hours for heating represented 

55 % of the total energy consumed for case study 1 (respectively 33 % for case study 2). Similarly, the 

electricity consumed during high peak hours represented 67 % of the total energy consumed for case 

study 1 (respectively 52 % for case study 2). Consequently, due to the thermal mass of the building, 
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energy was stored in the building, and allowed to switch off the heating system during peak and high 

peak hours. This energy storage was accompanied by an increase in the energy consumption by 24 % 

for case study 1 (respectively 29 % for case study 2). But the cost was lower due to the considered 

tariff.  

When forecast errors were taken into account, we can observe an increase in the cumulative 

cost compared to the theoretical MPC. For case study 1, the cumulative cost increased by 2 % with 

an underestimation of weather forecasts data and by 5 % with an overestimation of weather 

forecasts data. However, these costs were reduced compared to the reference scenario (reduction of 

11 and 8 % respectively). We can also observe a slightly decrease in electricity consumption load 

shifted (during peak and high peak periods) with an underestimation of weather forecasts data for 

both cases studies. This decrease is explained by the internal gains due to the Family 1 which were 

sometimes higher than the average statistical scenario (Figure 9). 

The observation is different when the weather forecasts data were overestimated. For 

instance for case study 2, the electricity consumption load shifted was decreased by around 15 % for 

peak or high peak periods compared to the theoretical MPC. Due to the overestimation of weather 

forecasts data, the MPC tended to underestimate the heating load. Consequently, when the control 

was applied in real conditions, it was necessary to heat during peak and high peak periods to follow 

the reference trajectory (due to internal gains prediction errors), causing an increase in the 

cumulative cost. For case study 1, the same problem is reinforced due to the occupancy scenario 

(Family 1) which had less internal gains. We can thus observe the interactions between the 

occupancy scenarios and the weather forecasts. 

Table 7: Results case study 1 (Family 1 occupancy) 

 19°C constant MPC (theoretical) 
MPC 

(underestimation) 
MPC 

(overestimation) 

Cumulative cost (€) 21.9 19 19.5 20.2 

Electricity consumed 
during off-peak hours 
for heating (kWh) 

56.2 135.3 136.2 109.9 

Electricity consumed 
during peak hours for 
heating (kWh) 

29.3 0.4 0.8 13.1 

Electricity consumed 
during high peak 
hours for heating 
(kWh) 

23.6 0 1.4 6.8 

High peak hours load 
shifted for heating (%) 

- 99 97 55 

Peak hours load 
shifted for heating (%) 

- 100 94 71 ��M4 / ��NO (°C) 19 / 20.5 19.1 / 23.3 19 / 22.6 19 / 22.4 



Table 8: Results case study 2 (Family 2 occupancy) 

 19°C constant MPC (theoretical) 
MPC 

(underestimation) 
MPC 

(overestimation) 

Cumulative cost (€) 22.8 21.1 21.5 21.2 

Electricity consumed 
during off-peak hours 
for heating (kWh) 

47.3 108.4 112.2 98.2 

Electricity consumed 
during peak hours for 
heating (kWh) 

19 0.3 0.7 3.5 

Electricity consumed 
during high peak 
hours for heating 
(kWh) 

18 0 0.3 2.6 

High peak hours load 
shifted for heating (%) 

- 98 96 82 

Peak hours load 
shifted for heating (%) 

- 100 98 86 ��M4 / ��NO (°C) 19 / 21.1 19.1 / 22.8 19.1 / 22.6 19.1 / 22.4 

 

6. CONCLUSION 

MPC framework and an interior penalty algorithm were used to study load shifting of heating 

systems in an energy efficient building. A reduced model derived from advanced building simulation 

software and a time-continuous algorithm were used to control the heating power in real time. First 

of all, the results showed that the balanced truncation method and the interior penalty algorithm 

were well suited for real time control problems and yielded precise results. Considering an 

experimental passive house (a well insulated building with a high thermal mass), it was possible to 

shift the heating load to off-peak periods thanks to the high thermal mass of the building. The load 

shifting enabled to decrease the heating cost by as much as 6 to 13 % compared to a 19°C constant 

temperature setpoint control strategy according to the assumed electricity prices schedule. Finally, a 

sensitivity assessment showed the MPC’s robustness to occupancy and weather forecasting errors. 

Despite the good results shown in the simulation cases studies, the effectiveness of the 

proposed MPC framework remains to be shown in real conditions. In particular, the MPC’s 

robustness to measurement uncertainty should be studied. Finally, the method could be extended 

for multi-zone buildings but this would require to adapt the optimisation algorithm to take into 

account the interaction between several zones of the buildings. 
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8. NOMENCLATURE 

8.1 Latin 

� state matrix 

� input matrix 

�L input matrix related to external factors 

�K input matrix related to heating power 

�  output matrix 

∁  bounded closed convex set 

�PQPR electricity price [€] 

�� thermal capacity of the mesh [J/K] 

� feedforward matrix 

� influence of the outside temperature, solar fluxes, occupancy and other appliances 

[W] 

VO observer error  

1 dynamical system 

HI Hamiltonian of the penalised problem  

( cost function 

� proportional gain [W/°C] 

Y positive parameter 

ℒ smooth real-valued function 

� observer gain 

� control dimension 

" state dimension (reduced model) 



J heating power [W] 

G adjoint state 

JR�4 controller heating power [W] 

J�NO maximal heating power [W] 

J�M4 minimal heating power [W] 

J�PS optimal control [W] 

JI∗ optimal control of the penalised problem [W] 

� state dimension (reference model) 

�	
 solar and internal gains [W] 

�	�  linearised heat losses [W] 

��� saturation function 

� indoor temperature [°C]  

�M integral time [s] 

�� temperature of the mesh [°C] 

��NO maximal acceptable temperature in heating zone [°C] 

��M4 minimal acceptable temperature in heating zone [°C] 

��PS optimal trajectory [°C] 

� time [s] 

�S final time of the optimisation period [s] 

�� control horizon [s] 

� driving forces [W] 

6 ∩ 7 control and state constraints 


 state of the building 


� estimated state of the building 

� zone temperature [°C] 

8.2 Greek 

:;�. � state penalty function 

:#�. � control penalty function 



∆� difference between the reference trajectory and the real trajectory [°C] 

F positive parameter 

F/ positive parameter 

F4 sequence of positive parameter decreasing to zero  

= variable change of the heating power 

=I∗ variable change of the heating power 

< generalised saturation function 
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10. APPENDIX A 

 

Figure 12: Climatic conditions (cold and cloudy period) 

 

 

Figure 13: Climatic conditions (cold and sunny period) 
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Figure 14: Climatic conditions (transition period) 
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