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Abstract

Modern phased-array multifunction radars have the ability to change or sched-
ule the tasks of the beam in order to accomplish all their missions in an optimized
fashion. The resource manager of the radar must then control the update rate of
the measurement task of target active tracking, so as to minimize the radar com-
puter load without losing targets. Scarce measurements lead to low radar load, but
they also lead to an increased number of illuminations at each measurement epoch
to find the target. Based upon this rationale, a sound procedure was proposed by
Blackman and Van Keuk to derive an optimal measurement rate. Their optimiza-
tion criterion is established using a linear Singer target model and a linear Kalman
filter. In this paper their method is extended, and we propose a versatile optimal
update rate algorithm that is applicable to virtually any nonlinear target model
combined with any nonlinear filter able to output an error covariance matrix. This
includes EKF, UKF, IMM, and particle filters. For numerical experiments and val-
idation we consider a nonlinear target model based on Frenet-Serret 3D equations,
and the tracking is performed by a nonlinear Invariant Extended Kalman Filter
(IEKF).

1 Introduction
The idea of cognitive radar has been defined in [2], and further developed in [3]. The
ability to adjust the illuminations in an intelligent manner is one of the characteristics
that distinguishes a cognitive radar from an adaptive one. Update rate adaptation falls
into this category. Indeed, the beam can be controlled to illuminate the most interest-
ing regions of the space in an intelligent manner, so that radar time budget is saved
and tracks are all maintained. This is possible thanks to the emergence of phased-array
fixed antennas that allow illuminating any region of the space at any time, as illumina-
tions are no longer imposed by the rotation of the antenna.
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Phased-array multifunction radars are designed to perform several tasks in parallel,
such as surveillance, also called Track While Scan (TWS), and active tracking (AT).
There is thus a competition between these different tasks regarding the resources of
the radar. The role of the resource manager is then to study and organize the different
requests. And notably as the radar beam is needed for both TWS and AT, its update fre-
quency for active tracking has to be carefully controlled, as well as for the TWS task.
Optimization to cover the entire space during TWS has already been studied, see [4],
[5]. In the case of AT, the illuminations requested have a label containing a duration
and an update period, and the adaptive resource manager uses a scheduling algorithm
to determine in which order these illuminations should be scheduled. Moreover, prior-
ity requirements may be accounted for. This priority can for example be the result of
a degradation in the tracking performances detected by an update rate adaptation algo-
rithm. Indeed, the radar must definitely not drop a track, especially when performing
active tracking. The drop probability, or equivalently the detection probability, are de-
termined in function of the performances of the filtering algorithm used to estimate the
target’s state, and other fixed characteristics of the radar, such as the Signal to Noise
Ratio (SNR) for a beam pointing in the direction of the target.

In this paper, we generalize the sound work of [1] to optimize the update rate of
the radar. In [1], the update rate adaptation method is designed for one particular
type of target model, namely the Singer model [6], combined with a Kalman tracking
algorithm. Since, it has been used as an efficient (yet suboptimal) rule of thumb, even
when using a different (possibly nonlinear) target model. Owing to the progresses of
computers over the past 25 years, we show it is now possible to extend the method
to any target model and estimation algorithm. Moreover, one must bear in mind that
the goal of update rate optimization is rather to save radar budget, than to enhance the
performances of the state estimation. Nevertheless, the tracking estimation precision
has to stay within an acceptable range, as also ensured with the algorithm proposed in
this paper.

A Kalman-type filtering algorithm provides the estimated distribution of the state,
assuming that this distribution is Gaussian. It thus provides the mean of the distribu-
tion, which is usually called the estimated state, and the covariance of the distribution.
Among the most well known algorithms are the linear Kalman Filter, the Extended
Kalman Filter [10], and the Unscented Kalman Filter [11], [12] for the Kalman-based
algorithms. There are also the particle filters, among which [13] for the standard par-
ticle filter or [14] for the Rao-Blackwellized particle filter. Although the method of
Blackman and Van Keuk relies on a fixed criterion, because of the particular form of
the state evolution model chosen, it is possible to compute the detection probability for
one target with respect to the covariance output by any of the latter filters in real time.
The update rate adaptation introduced in the present paper, that allows for the criterion
to adapt over time, builds upon the latter idea.

Target tracking typically relies on an accurate motion model and a robust filter-
ing algorithm. In this paper, the general methodology will be applied to a 3D target
model in intrinsic coordinates based on the Frenet-Serret frame. Such kind of nonlin-
ear models are advocated in [7] and appear well suited to actual target motion, since
they essentially correspond to piecewise constant command controls in the frame of the
target. The filtering algorithm used to estimate the state parameters is called an Invari-
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ant Extended Kalman Filter (IEKF). This algorithm is more robust than the standard
Extended Kalman Filter (EKF) according to the results of [8] and [?] for guidance and
navigation applications, and [9] for radar. The proposed update rate adaptation method
will be applied to the latter model and filter in the numerical experiment section, but it
may in principle be applied to any model combined with any other filtering algorithm
that provides a covariance to the user.

1.1 Links with prior literature
To optimize the update rate of observations during Active Tracking, one has to define an
optimization problem. In this paper, we use the same criterion as [1], where the authors
model the load of the radar as a ratio between the number of illuminations necessary to
find a target (at each measurement epoch) and the time elapsed between two measure-
ments. The rationale is that scarce measurements lead to low radar load, but they also
lead to an increased number of illuminations at each measurement epoch to find the
target. As a result, finding the optimal update rate (i.e., time between two consecutive
measurements) is a feasible optimization problem. Other optimization schemes may
be designed depending on the radar’s performances and on the user’s objectives, but in
this paper we focus on the optimization problem as posed by Blackman and Van Keuk.

Other update rate adaptation algorithms have been developed in the literature. [15]
uses an alpha beta filter and an adaptation scheme so that the residual error of the filter
remains constant. Another type of algorithm consists in using an Interacting Multiple
Model filtering algorithm (IMM), as in [16], or later [17], where the idea is also to
maintain a given level of filtering precision, thanks to the covariances computed by
the IMM. The IMM is also used in [18] to control the size of the validation region, to
address the association problem. Our problem is slightly different, since we are not
only interested in maintaining a given precision, but in reducing the overall radar time
spent for each measurement. In [19], the IMM is also used to compute an adaptive
update rate related to the maneuvers of the target, and based on the Blackman and Van
Keuk approach. However, contrary to the latter, we propose a versatile algorithm that
applies to virtually all kinds of filtering algorithms, and we rely on the filter to return
necessary mathematical quantities.

Another method to adapt the update rate is to use a maneuver detection algorithm,
such as the Variable Rate Particle Filter, see [20], [7], which may be used as a maneuver
detector. The Variable Rate Particle Filter is used to evaluate the proportion of jumping
particles, and thus is able to detect when more particles are jumping, which means that
a parameter is abruptly changing. More generally, change detectors are a very wide
class of algorithms, that are described in the book [21], or more precisely in [22] for
the Generalized Likelihood Ratio (GLR) algorithm, or [23] for the CUSUM algorithm.
Another change detection method based on the computation of appropriate distances
between the outputs of Kalman filters can also be designed, as stated in [24]. All these
detectors perform quite well when applied with an IMM algorithm. We will not discuss
these methods in this paper, since we opted for a wholly different route. Increasing the
measurement rate when a change is detected is quite basic, and change detectors are
rarely used as update adaptation means but rather as urgent pointing commands.
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1.2 Organization and contributions of the paper
This paper is organized as follows. In section 2, we provide a digest of the Blackman-
Van Keuk method to optimize the update rate. This section may serve as a tutorial
introduction to the more difficult to read paper [1]. The method is generalized in sec-
tion 3, and results in a versatile adaptive algorithm. More precisely our algorithm
informs the radar resource manager what the (maximum) measure update should be in
real time so that the detection probability of a given target stays above a given thresh-
old. Then, in section 4, this novel algorithm is applied to a nonlinear target model
based on Frenet-Serret equations. The state estimation task is performed by a nonlin-
ear filtering algorithm, the IEKF, which is suits well the considered model. Finally in
section 5, the proposed algorithm is compared to the Blackman and Van Keuk criterion,
using both the Singer model and the nonlinear model of Section section 4.

2 Fixed update optimization criterion
In this section, we first recall the equations of the Singer target model and of the linear
Kalman filter. This model is needed to derive the fixed update rate criterion of Black-
man and Van Keuk. The derivation of the criterion is fully explained in section 2.2.

2.1 The Singer model and the linear Kalman Filter
2.1.1 The Singer model

The target dynamics are supposed to be three-dimensional and in Cartesian coordinates.
The well-known Singer model, see for example [6] or [25], is a linear model based on
the assumption that the acceleration coordinates a1,a2,a3 are all mutually independent
Ornstein-Uhlenbeck processes. We have

ȧi(t) =−αai(t)+w(t), i = 1,2,3

with w(t) a continuous white Gaussian noise, and the autocorrelation of each accelera-
tion coordinate thus writes:

E[ai(t)a j(t + τ)] = δi jΣ
2e−ατ

with Σ the acceleration noise standard deviation and 1/α is the correlation time. Such
model accounts for the fact that accelerations in one direction tend to typically last
for some time 1/α , but on average the acceleration of the target is 0. This gives the
following discrete evolution equation (1) for each position coordinate i, and between
two time instants k and k + T . x =

(
xT

1 xT
2 xT

3
)T will be the 9-dimensional state

vector.

xi(k+T ) = Fxi(k)+wk =

1 T αT−1+e−αT

α2

0 1 1−e−αT

α

0 0 e−αT

xi(k)+wk (1)
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The process noise covariance matrix Q (from which the Gaussian white noise wk is
drawn) writes Q = E[wkwT

k ]. The expectation can be explicitly computed as a time
integral, as shown in the Appendix I of [6], and finally the matrix writes

Q = 2αΣ
2

T 5

20
T 4

8
T 3

6
T 4

8
T 3

3
T 2

2
T 3

6
T 2

2 T


Letting v(k) be a Gaussian white noise, radar measurements write:

y(k) = Hx(k)+ v(k), E[v(k)v(k)T ] = N (2)

y(k) is the cartesian position measured at time k, and H is the measurement matrix,
which writes:

H =

H1 01,3 01,3
01,3 H1 01,3
01,3 01,3 H1


with H1 =

(
1 0 0

)
.

2.1.2 Linear Kalman Filter

With model (1) and measurements (2), one can perform linear Kalman filtering. The
equations of the linear Kalman filter are recalled below, where Q and N are the covari-
ance matrices for the process and the measurement noises respectively.

1. Prediction step:
x̂(k+1) = Fx̂(k)

P(k+1) = FP(k)FT +Q(k)

2. Update step:
z(k) = y(k)−Hx̂(k)

K(k) = P(k)H(HP(k)HT +N)−1

x̂+(k) = x̂(k)+K(k)z(k)

P+(k) = (I9−K(k)H)P(k)

As the considered problem is linear, Gaussian, and time-invariant, the Kalman co-
variance matrix converges to a fixed value, called P∞ (see [26]). It turns out that the
latter convergence property allows deriving a fixed criterion for the optimization of the
update rate.
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2.2 Fixed optimal update frequency derivation
In [1], Blackman and Van Keuk propose the following approach to optimize the update
frequency in order to minimize radar load. The radar load Lc is defined as

Lc =
E(n)
E(T )

, (3)

where E(n) is the average number of illuminations to find a target and T is the duration
between two measurements. The problem is feasible, as the more time T we wait
between two measurements, the less energy is spent, but the more difficult it is to find
the target again, and the average number of illuminations has to be increased to recover
sight of the target. It is possible to express E(n) and E(T ) as a function of a common
variable, V0 as follows.

To compute (3), one needs to express the covariances in (r,u,v) coordinates where
r is the distance of the radar to the target, and u,v are the angles defined as follows:

u = cosel sinaz

v = sinel

where el and az are the elevation and azimuth angles respectively.

• Estimation of E(n): [1] proposes a way to estimate E(n). As it is not the main
concern of this paper, and may depend on the radar and the repointing strategy
we will not enter the details of the estimation nor will we discuss the choice of
the method to perform the estimations. We will directly use instead the search
strategy proposed in [1], as explained in section 3. The strategy is to search
the target at the maximum of the pdf of its predicted position in (u,v). If the
target is not found at the first illumination, then we compute a slightly modified
pdf and try again, until the target is found, or we reach a maximum number of
illuminations. This strategy will be detailed more precisely in section 3 where
we will use it to develop our adaptive algorithm. The expectation of the number
of illuminations to find a target is given by (4), with α̃ ≈ 1+14(| lnPF |/SN0)

1/2,
and PD =P1/(1+SN0)

F where PF is the probability of false alarm and SN0 the Signal
to Noise Ratio at the center of the beam.

E(n) =
1

PD
(1+ α̃V 2

0 )
1/2 (4)

• Estimation of E(T ): it depends on the chosen target model. For the Singer linear
model with Cartesian observations, the covariance matrix converges towards a
fixed matrix P∞ so the variance of the predicted dispersion of the target’s position
also converges towards a value P̃∞, which depends on T , the duration between
two measurements (the larger T the larger the eigenvalues of P̃∞). It means that at
the measurement time, the position of the target can be modelled by a Gaussian
random variable of variance P̃∞. The formula giving P̃∞(T ) can be inverted to get
T (P̃∞), which is also a nontrivial property due to the use of the Singer model. The
inversion of the formula P̃∞(T ) will not be possible with other models indeed.
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Using the two latter components, we can evaluate Lc of equation (3) as a function of
P̃∞. As will be shown in the sequel, this is equivalent to express Lc as a function of V0.

Van Keuk and Blackman have introduced the quantity V0 to evaluate the angular
precision of the relative prediction with respect to the beamwidth B such that G(k) =
V0B, where G(k) is the principal axis of the 1σ ellipse defined by the covariance matrix
of the prediction error at time tk given by the Kalman filter, and associated to coordi-
nates in the angular (u,v) space. One can assume that the probability distributions of
the measurement and the process noise are isotropic in the angular coordinate system
(u,v), so the ellipse is in fact a circle. It is then possible to choose arbitrarily any co-
ordinate axis as the principal axis, say, u. G(k) can thus be expressed from the filter’s
covariance P(k) as follows. Recall that, P̃(k) = HP(k)HT is the position covariance
matrix according to the filter. We have G(k) =

√
H̃uv(k)P̃(k)H̃uv(k)T , with H̃uv the

Jacobian of the matrix that relates the Cartesian to spherical (r,u,v) coordinates, i.e.,

H̃uv(k) =

 x1/r x2/r x3/r
x2

2+x2
3

r3 − x1x2
r3 − x1x3

r3

− x1x3
r3 − x2x3

r3
x2

1+x2
2

r3

 (5)

The time between two revisits, which depends on the average number of illumi-
nations necessary to find the targets, also converges to a stable value when the error’s
variance filter becomes stationary. So let us focus only on the stationary asymptotic
phase. Define

P∞ = lim
k→∞,αT→0

P(k).

Using the asymptotic Riccati algebraic equation, the stationary position covariance P̃∞

is given by (6), where (.)pos extracts the coefficients corresponding to the position
variable in the covariance matrix, i.e., (C)pos := HCHT , and diag(a) is the matrix with
a on its diagonal.

P̃∞ =
(
F(P−PHT (HPHT +N)−1HP)FT )

pos +diag(2αΣ
2 T 5

20
) (6)

N = σ2I3 is the measurement covariance matrix. Moreover, as we are only interested
in the angular variability, we select the second diagonal element of H̃uv(k)P̃(k)H̃uv(k)T

which is the variance of the asymptotic error in the u variable, hence:

G =
√[

H̃uvP̃∞H̃T
uv
]

2,2 =V0B (7)

The idea is that P̃∞ is a good approximation for the position uncertainty of the radar.
The uncertainty in (r,u,v) coordinates is H̃uvP̃∞H̃T

uv. Since we are only interested in the
angular uncertainty, we suppose that r is nearly constant (the same assumption is made
in [1] where all formulas depend in fact of r).

Let also C̃ =
(
F(P−PHT (HPHT +N)−1HP)FT )

)
pos. One can isolate T from

equation (6), which gives (8)

T = (10)1/5

(√
1/α

Σ

)2/5 (
P̃∞−C̃

)1/5 (8)
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Moreover, from (7), and given that the range r is supposed to be approximately con-
stant, we have

P̃∞ ≈ r2V 2
0 B2

Finally, (8) becomes

T = (10)1/5

(
σ
√

1/α

Σ/r

)2/5(
V 2

0 B2

σ2 −
C̃

σ2r2

)1/5

(9)

From now on, let ν0 = V0B
σ

. Blackman and Van Keuk argue that over a large set of
parameters the following approximation is valid

T ≈ 0.4PD

(
σ
√

1/α

Σ/r

)0.4
ν2

0

1+ ν2
0
2

(10)

where PD is the detection probability, r is the distance between the target and the radar
(in m), ξ is the slope factor associated with the mono-pulse measurement process (ξ =
1.37). Moreover the measurement noise standard deviation in angular coordinates σ

can be expressed as follows:

σ =
B

ξ
√

2(SNR+1)
, SNR≈ SN0− lnPF

1+2V 2
0

Finally, the expression of the radar load Lc is given by (11), with B the half-
beamwidth.

Lc ≈

(
Σ

Br
√

1/α

)0.4
1

PD
f (V0,SN0,PF) (11)

The paper [1] states that for a quite large set of parameters (SN0 ∈ [10,160], PF ∈
[10−8,10−4]) the optimal V0 is 0.3, which gives the optimal revisit period T = 4.6s for
r = 60km,Σ = 10m/s2,α = 1/60s,PF = 10−5,SN0 ≈ 30(15dB),B = 1

◦
.

The Blackman Van-Keuk criterion thus gives the optimal track sharpness in the
(u,v) space. Whatever the value of the beamwidth, the optimal track sharpness is one
sixth of the beamwidth. The revisit time can then be computed on-line thanks to this
criterion and to the predicted covariance matrix given by the filtering algorithm, using
a smaller time step during the prediction phase.

This is the optimized revisit period for a Singer linear model, and the one sixth
of the beamwidth sharpness provides the practitioner with a useful rule of thumb for
design purposes, but it should be refined when one wants to use alternative models
and filters. In a nonlinear context, the simplifications of the convergent covariance
matrix and the inversion of the formula giving P̃∞ will no longer be doable, and we
have to use numerical integration to derive the optimal revisit time at each time step.
The advantage of this method will be to have a totally adaptive revisit time period,
that will vary at each time step, and evolve with the measurements, instead of using a
fixed criterion. Moreover it is much more versatile, as it suits any model and filtering
algorithm, contrary to the previous criterion.
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3 Update rate adaptation with a nonlinear model
The Singer model is a specific target model, that dates back to the seventies, and is not
pervasively used nowadays. The aim of this section is to propose a generalization of
the previous method to any target model, given that the estimation method can provide
a predicted covariance matrix whenever it is required. The method of Blackman and
Van Keuk to establish a fixed criterion is indeed too simplistic to be applied straight-
forwardly to any model. However, their initial idea to compute the optimal load with
the covariance matrix of the filter can be used to derive another algorithm that can be
applied to virtually any filtering algorithm. The computational power to compute a
criterion online and to perform the necessary numerical integrations might have been
too demanding in the nineties, but can be considered as unproblematic with modern
computers.

Figure 1: Method used for the adaptive update rate adaptation algorithm

3.1 Method: an adaptive criterion for update rate adaptation
Let us call PD(t) the detection probability to find a target at a time t. Let us assume that
there is a minimum and maximum update rate. The rationale is as follows. We com-
pute the predicted covariance associated to the minimum inter-measurement time, and
then increase it gradually until the detection probability drops below a threshold given
by client specifications or set by an engineer for example. The method is illustrated
by fig. 1. More precisely, we can compute PD(t) at each time step, and even more
often than it is needed. Let us take a smaller time step than the minimum sampling
rate. One can integrate the Riccati equation at this short time step and compute the
corresponding probability detection easily. A threshold can be used for the probability
detection to request a new measurement when it is not satisfying. The new algorithm
computes the maximum duration between two measurements, under the constraint that
the detection probability, whose computation depends on the number of illuminations,
stays high enough. In that sense, it mimics the criterion of Blackman and Van Keuk
that minimizes the radar load Lc.
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Let us call dT the maximal revisit period between two measurements. We perform
covariance prediction every t+k.dt, with k∈N and dt < dT . The algorithm to compute
the time of the next target revisit is explained in Algorithm 1, where s is the acceptable
probability detection threshold. Suppose we are at time t and we want to refresh the
measurement to ensure a detection probability PD > s. The next revisit time is called
T .

We use the same optimization criterion as in [1], so we allow several illuminations
to find a target. We use the same search strategy as for the fixed criterion derivation.
This includes expressing the covariance in (u,v) coordinates, the transformation matrix

given by (5) in section 2.2, with r =
√

x2
1 + x2

2 + x2
3.

Algorithm 1 Computation of the next revisit time T

Input: X̂t ,Pt

1: while PD > s and k < kmax do
2: k := k+1
3: Compute X̂t+k.dt and Pt+k.dt with the propagation equations of the filter applied

to X̂t ,Pt
4: Compute Huv, the measurement matrix in the (u,v) space, see (5)
5: Compute σ2 = HuvPt+k.dt(pos)HT

uv
6: for ni = 1 to Nmax do
7: Compute the SNR and the detection probability, according to the number of

the illumination ni: Compute pd f (ni), find its covariance σ2 and compute
SNR and PD with (14) and (13)

8: end for
9: Compute the overall probability detection: PD = max(PD(ni))

10: Compute the next time revisit: T = t + k.dt
11: end while

Output: T

We also assume that we have an upper bound to the number of illuminations nec-
essary to find a target if the first ones give no detection. This superior bound is called
Nmax. The detection probability also depends on the target search strategy.

3.2 Underlying search strategy
As briefly explained in section 2.2, the search strategy is based on the pdf of the pre-
dicted position in (u,v) coordinates. We call this pdf pd f (1). The radar beam points
towards the maximum of this pdf in order to maximise the chance to detect the target. If
we denote by (u,v) the angles of the beam of the radar and by (û, v̂) the predicted posi-
tion of the target, then following [1], the Signal-to-Noise Ratio (SNR) can be computed
as in (12) to get the detection probability in (13), with PF the false alarm probability.

SNR(u,v) = SN0 exp
(
−2

(u− û)2 +(v− v̂)2

B2

)
(12)
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Algorithm 2 Algorithm to perform update rate adaptation for a generic model

1: while T (h)≤ N do
2: h := h+1
3: Apply algorithm 1, which gives T (h), with inputs X̂+

T (h−1),P
+
T (h−1)

4: Propagation phase : Compute X̂T (h) and PT (h)
5: Request a measurement at time T (h)
6: Compute the update X̂+

T (h) and P+
T (h)

7: end while

PD(u,v) = P
1

1+SNR(u,v)
F (13)

If the target is not detected on the first illumination, then the pdf is slightly changed
into

pd f (2)(u,v) :=C(1−PD(u,v))pd f (1)(u,v)

The constant is used to normalize the pdf, and of course PD depends on the position
because the SNR does.

We can compute the normalizing constant C of the pdf online, and find its mean µ2
and covariance σ2 and thus find the SNR with (14) or (12), that permits to compute PD,
with (13) again. This operation can be performed as long as the target is not found, and
the maximum number of illuminations Nmax is not reached either.

SNR≈ SN0− ln(PF)

1+2(σ2/B)2 (14)

Let N be the duration of the whole trajectory, T be the function relating the number
of the update with the time of the update. The adaptation algorithm is summed up in
Algorithm 2.

The main difference between this adaptive method and the regular Blackman and
Van Keuk criterion is that in our method, the optimization is performed at each time
step, and the update rate is thus perfectly suited to the instantaneous performances of
the underlying estimation algorithm. It is possible to link experimentally the detection
probability threshold required for the adaptive criterion and the threshold on the co-
variance matrix in the fixed criterion derivation. This will be explained in greater detail
in section 5.

As an application of the proposed method, we use a nonlinear target model, based
on the use of the Frenet-Serret frame.

4 Application: Nonlinear target model
In this section we derive a nonlinear model expressed in intrinsic coordinates repre-
senting piecewise constant controls in the target frame. It is thus realistic for a large
range of flying controlled object. This model is expressed in a Lie group setting, and
an appropriate filtering algorithm to perform state estimation is the Invariant Extended
Kalman Filter (IEKF) as explained below.
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4.1 3D target model in intrinsic coordinates
We still consider the target is evolving in a 3D space. Its motion is described by piece-
wise constant control commands in a frame that is attached to the aircraft. The idea of
expressing the state of the target in a frame attached to it is now a common idea, see
[27], [20, 7], see also [28] for robotics applications. For the radar application, and to
take into account 3D motions, but accounting for the fact that rotations of the target
on itself are unobservable, the Frenet-Serret frame seems most appropriate. The tar-
get motion model will thus be derived from the Frenet-Serret frame (T,N,B) evolution
formulas. They write

dT
dt

= uκN,
dN
dt

= u(−κT + τ̃B),
dB
dt

=−uτ̃N (15)

u is the norm of the velocity of the centre of the frame. Let us call γ = uκ and τ = uτ̃ the
curvature and the torsion of the trajectory respectively (this is slightly different from the
mathematical definitions of the curvature and the torsion, κ and τ̃). If we express the
rotation matrix going from the Cartesian frame to the Frenet-Serret frame R=(T,N,B),
we can derive the evolution equations (16), assuming that the tangential velocity u,
the curvature γ and the torsion τ are approximately constant, and introducing e1 =(
1 0 0

)T , and ωt =
(
τt 0 γt

)
.

The state of the target is composed of the Cartesian position of the target xt ∈ R3,
the rotation matrix R ∈ SO(3), the tangential velocity u ∈ R+, the curvature γ ∈ R+

and the torsion τ ∈ R+, so it is of dimension 9. The notation (a)× in equation (16) is
explained in the appendix, it refers to the skew-symmetric matrix associated to the 3D
vector a. wx

t ,w
ω
t ,w

γ

t ,wτ
t ,w

u
t are Gaussian white noises, assumed mutually independent.

The target model then writes
dxt

dt
= Rtute1 +wx

t ,
dRt

dt
= Rt(ωt +wω

t )×

dγt

dt
= 0+wγ

t ,
dτt

dt
= 0+wτ

t ,
dut

dt
= 0+wu

t ,

(16)

whose first line is a matrix and noisy version of (15), and where the second line states
the Frenet parameters (γt ,τt ,ut) are approximately constant over time. As underlined
in the equation, the state is composed of two relatively different parts. On the one
hand, Rt ,xt undergo a nonlinear evolution, and on the other hand γt ,τt ,ut have a linear
evolution. Moreover, we can cast Rt and xt into a matrix Lie group setting, defining

χt =

(
Rt xt

01,3 1

)
, ζt =

γt
τt
ut

 (17)

χt belongs to a matrix Lie group that is called SE(3), it is the group of rotations
and translations in 3D, and it can describe the motions of a point in the 3D space. The
state has thus a matrix part, χt and a vectorial part ζt . The equations (16) can thus in
turn be rewritten as follows;

dχt

dt
= χt(νt +wχ

t ),
dζt

dt
= 0+wζ

t (18)
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with wχ

t =
(
wω

t wx
t
)
×, wζ

t =
(
wγ

t wτ
t wu

t
)T , and the matrix νt :

νt =


0 −γt 0 ut
γt 0 −τt 0
0 τt 0 0
0 0 0 0


For more information about the Lie groups SO(3) and SE(3) and in particular for

the expression (.)×, see the appendix.
The matrix part of the model, assuming that ζt is a known input follows a left-

invariant evolution equation. We can thus apply an Invariant Extended Kalman filter on
the matrix part and a linear Kalman filter on the vectorial part. The resulting algorithm
is described in the next section.

4.2 The IEKF algorithm
To derive a Kalman-type algorithm, one needs to define the error associated to the
estimation. In the vectorial case where Xt is the state, the error is defined by ηX

t =
X̂t −Xt , where X̂t is the estimated state at time t. However this error definition has
no sense when it comes to matrix states, and especially when the state lies in a Lie
group. Indeed, if χ1 and χ2 are two matrices belonging to SE(3), there is no reason
why χ1−χ2 should also belong to SE(3). A more proper and meaningful definition of
the matrix error is to consider

η
χ

t = χ
−1
t χ̂t . (19)

Now let us suppose that ζt of (17) is known. Then the error evolution equation is
autonomous, indeed:

dη
χ

t

dt
= η

χ

t νt −νtη
χ

t −wχ

t η
χ

t (20)

does not depend on the predicted state χ̂ at all. If, like in our radar application ζt of (17)
is not known, then this equation undergoes a slight modification, as detailed below:

dη
χ

t

dt
=−χ

−1
t

dχt

dt
χ
−1
t χ̂t +χ

−1
t

dχ̂t

dt
=−(νt +wχ

t )η
χ

t +η
χ

t ν̂t

So finally, for an unknown ζt of (17), (20) writes:

dη
χ

t

dt
= η

χ

t ν̂t −νtη
χ

t −wχ

t η
χ

t .

The evolution of ζ remains in the classical setting η
ζ

t = ζ̂t −ζt , and its evolution is:

dη
ζ

t

dt
= 0+wζ

t

To be able to express the covariance matrix evolution, the evolution of the linearization
of this double error has to be derived. To achieve this, see the preliminary conference
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paper [9] that presents the explicit computations in 3D. Let us call ξ
χ

t and ξ
ζ

t the
linearized errors associated to η

χ

t and η
ζ

t respectively. If we introduce the linearized

error ξt =
(

ξ
χ

t ξ
ζ

t

)T
, then we have the following global linearized error evolution:

dξt

dt
= Atξt +wt

with the sparse linearized matrix

At =



0 −γ̂t 0 0 0 0 0 −1 0
γ̂t 0 −τ̂t 0 0 0 0 0 0
0 τ̂t 0 0 0 0 −1 0 0
0 0 0 0 −γ̂t 0 0 0 −1
0 0 −ût γ̂t 0 −τ̂t 0 0 0
0 ût 0 0 τ̂t 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


At this point, it becomes easy to adapt the standard Kalman filter equations to our

model and error definition. The usual vectorial operations have to be adapted to the Lie
group/Lie algebra operations. The algorithm and the adapted operations are described
below, it mimics the standard linear Kalman filter presented in section 2.1. We assume
noisy Cartesian position measurements ytn = xtn + vn, with vn white Gaussian noise
with covariance N. Let H be the measurement matrix, it writes H =

(
03,3 I3 03,3

)
.

1. Prediction step: solve
dχ̂t

dt
= χ̂t ν̂t and

dζ̂t

dt
= 0

dPt

dt
= AtPt +PtAT

t +Qt

2. Update step:
zn = R̂T

tn(ytn − x̂tn)

Kn = PtnH(HPtnHT + R̂tnNR̂T
tn)
−1

χ̂
+
tn = χ̂tn exp((Knzn)0:5) and ζ̂

+
tn = ζ̂tn +(Knzn)6:8

P+
tn = (I9−KnH)Ptn

The exp refers to the Lie group exponential, see the appendix.
The use of the error η

χ

t ensures that the covariance matrix evolution does not de-
pend on x̂t nor on R̂t , as it would be the case for an EKF. Indeed, the EKF uses a
linearization of order 1 of the nonlinear evolution function around the predicted state.
In 3D, it is moreover very difficult to express the evolution as a vectorial equation,
since the rotation matrix has to be replaced by the three rotation angles, that have very
nonlinear evolution. Thus, the IEKF is better suited to this target model than the EKF,
because of the rotation matrix that can be embedded in a Lie group.
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4.3 Expected performances
We can compute approximately the detection probability threshold induced by the use
of the fixed criterion to compare with the adaptive criterion, thanks to (21). On a trajec-
tory simulated with a Singer model, the results obtained should be very similar. Indeed,
the Singer model and the linear Kalman filter match the hypotheses of section 2.2.

PD0 = P
1

1+SN0
F (21)

When using the Frenet-Serret based model instead, we anticipate an improvement
of the optimization rate Lc when we move from the fixed criterion to the adaptive one.
The usefulness of the adaptive method will depend on the size of the improvement. An
advantage of the adaptive criterion is also to adapt the detection probability threshold
to the requirements of the client. This detection probability could also serve as an
indication of the performance of the estimation filter.

Finally, for the fixed as for the adaptive criteria, the update rate adaptation algorithm
is very dependant on the quality of the filtering algorithm, since it is based on its results.
Indeed if the algorithm provides erroneous covariance predictions, then the update rate
computations will be also erroneous. And once again, what we expect of this update
rate adaptation is an improvement of the radar load Lc and not of the precision of the
estimation. So the filtering algorithm has to be reliable to perform these update rate
algorithms. This is why we begin by assessing the performances of the linear Kalman
filter on a Singer model trajectory, and the IEKF on a Frenet-Serret model trajectory,
with a fixed update rate.

We have performed several experiments to show the differences between the filter-
ing algorithms and the update rate adaptation methods, as described in the next section.

5 Experiments
In this Section, the adaptation algorithm is tested for the two different study cases
described in the previous sections. The first study case is the linear Singer model
tracked with the linear Kalman filter, and the second study case is the nonlinear Frenet-
Serret model tracked with the IEKF. We show the results for the fixed criterion and
adaptive algorithms for both cases, and compare the results obtained. The trajectories
are built differently for the two models, as will be explained in the following sections.

To begin with, we show the tracking performances of the linear Kalman filter with
the Singer model and of the IEKF for the Frenet-Serret model without any update rate
adaptation. Then, the update rate will be adaptive and the behaviours of the fixed and
adaptive methods along with the radar load will be compared.

5.1 Tracking results with a linear Kalman filter and an IEKF
In this part, we only illustrate the relevance of the models and filters involved, without
any concern about the update rate adaptation problem yet.
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5.1.1 Tracking with the Singer model with jumps

To test the filters, we first build a trajectory using the Singer model (1): we include
one maneuver that occurs at time t = 200s, in which the two first coordinates of the ac-
celeration undergo a sudden jump from a1 =−0.8m.s−2 and a2 =−0.9m.s−2 to a1 =
2.2m.s−2 and a2 = 2m.s−2. The position is initially

(
x1 x2 x3

)
=
(
6000 6000 6000

)
m,

and the velocity
(
v1 v2 v3

)
=
(
0.5 0.5 0.5

)
m.s−1. The parameters for the Singer

model are α = 1/60s−1 and Σ = 1.0. The acceleration on the third coordinate does not
jump and is initially equal to a3 = −0.9m.s−2. The measurement noise is of variance
1000m. This trajectory is presented in fig. 2.

Figure 2: Measured trajectory with the Singer model and one maneuver

The tracking results of the position, the velocity and the acceleration on the first
coordinate of the Kalman filter for this trajectory is presented in fig. 3. The update
rate is set to be one measurement every ten seconds. The filter estimates quite well
the position and the velocity. The estimation of the acceleration is more difficult, espe-
cially when the jump occurs. As for all Kalman-based filters, the tuning of the model
noise covariance matrix plays a high role in finding a balance between the precision of
the estimation and the ability to react efficiently when manoeuvres occur. For further
information about noise tuning for Kalman filters, e.g. [29], [30].

The lack of precision in the acceleration coordinate is not of crucial importance, as
long as it does not result in a reduced precision for the velocity coordinate, which is
a parameter that is relevant for some applications (among which intercepting missiles
for instance).

5.1.2 Tracking with the Frenet-Serret model with jumps

We test our IEKF algorithm with the trajectory presented in fig. 4. The trajectory is
made of three Frenet-parameters constant parts (18). In the first part, the target has
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(a) (b)

(c)

Figure 3: Results of the linear Kalman filter estimations for the position in x fig. 3a,
velocity in x fig. 3b and acceleration in x fig. 3c
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a constant velocity straight line motion. In the second part, the target has an helix
trajectory, with constant velocity, curvature and torsion, and finally, the target does a
constant planar turn. The maneuvers occur at times t = 200s and t = 450s respectively.
The initial state is R0 = I3, x0 =

(
104 104 104

)
m, u0 = 100m.s−1, γ0 = 0.02s−1

and τ0 = 0. The first jump at t = 200s is characterized by u200 = 500m.s−1, γ200 =
0.07s−1 and τ200 = 0.005, and the second jump by u450 = 200m.s−1, γ450 = 0.002s−1

and τ450 = 0, elsewhere, the velocity, curvature and torsion are constant. We assume
Cartesian position measurements, and we add Gaussian measurement noise of variance
1000m independently on the three axis.

Figure 4: Measured trajectory with two maneuvers

We show the performances of the IEKF, used with a fixed update rate of T = 5s. The
tracking results of the IEKF alone are presented in fig. 5. We see that the torsion is very
difficult to track accurately, indeed, it is a third derivative of the position, and thus it is
barely observable. The same problem as the linear Kalman filter with the noise tuning
occurs because of the presence of jumps. However once again, the tracking results are
satisfying to perform update rate adaptation with the same noise tunings. Indeed, the
position and the norm of the velocity, and to a certain extent also the curvature are well
estimated with this fixed update rate.

5.2 Update rate adaptation
We now implement the two update rate adaptation methods presented in this paper. The
first one uses the fixed Blackman and Van Keuk criterion described in section 2.2, and
the second one is the adaptive criterion of algorithm 2. We test the algorithms on the
trajectories presented in the previous section, and keep the same process noise tunings
for the filtering algorithms.
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(a) (b)

(c) (d)

Figure 5: Results for the tracking with the IEKF, with the x position fig. 5a, the curva-
ture fig. 5b, the norm of the velocity fig. 5c and the torsion fig. 5d
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5.2.1 Update rate adaptation with the Singer trajectory

We first present the results obtained with the Singer model based trajectory. We com-
pare the fixed criterion with the adaptive one. The Singer model being the model used
to compute the fixed criterion, the results should be very similar between both methods.
The parameters used for the update rate adaptation for both algorithm are summarized
in table 1.

Fixed update criterion The fixed criterion has been first implemented. We plot the
duration computed by the algorithm between two measurements as a function of the
time elapsed since the beginning of the trajectory. The higher bound for the duration
is T = 10s and the lower bound is T = 0.01s. The graph for the time interval between
measurements is presented in fig. 6a.

(a) Fixed criterion (b) Adaptive criterion

Figure 6: Comparison of the duration between two measurements for the Singer model,
with the fixed criterion on fig. 6a and for the adaptive criterion fig. 6b. We see the
behaviour of the adaptation is very similar for the two criteria. This was expected since
the fixed criterion is derived for a Singer model. The peak corresponds to the moment
the target becomes very close to the radar, so the angular covariance becomes large.

We can note that the adaptation is not necessarily linked to the presence of a ma-
neuver (the update rate decreases before the maneuver occurs). In fact, it is due to an
increase of the covariance in the u-coordinate at t = 175s, becomes the target is very
close the radar at this point, and we consider the angular dispersion. Let us now com-
pare this behaviour to the one obtained with the adaptive algorithm described in this
paper.

Adaptive criterion We make the same experiment, but we replace the fixed criterion
with the adaptive one of algorithm 2, and plot the result in fig. 6b. In order to achieve
this, we compute the detection probability PD that corresponds to V0 = 0.3 thanks to
the formula PD0 = P1/(1+SN0)

F , which gives the threshold in algorithm 1 to be s = 0.72.
We also plot the lateral position covariances for both algorithms in fig. 7. The

duration general form curve echoes the covariance curve. When the covariance is low,
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(a) Fixed criterion (b) Adaptive criterion

Figure 7: Comparison of the covariances for the angular coordinate for the Singer
model, with the fixed criterion on fig. 7a and for the adaptive criterion fig. 7b.

then the maximum duration between two measurements is reached (in the first 150
seconds for instance).

As expected, the update rate is very similar in both cases. Indeed, the fixed criterion
is adapted to this Singer model, and the adaptive criterion is designed to match any
model formulation. This shows our method encompasses and generalizes the model of
Blackman and Van Keuk indeed.

Optimization ratio We have performed 100 Monte-Carlo experiments to compute
the value of the rate Lc = E(n)/E(T ) for both methods in order to compare them. The
loads Lc computed are given in table 2. The small difference is due to the approxima-
tions that are made in the fixed criterion derivation, and also to the fact that we are not
necessarily in a stationary regime during all the trajectory, but the results are neverthe-
less very similar. We also collect the position estimation Root Mean Square Error, to
ensure there is no major degradation of performance when using the adaptive criterion.
Indeed, the radar load is optimized, but the tracking performances need to stay at least
in the same magnitude order. The RMSE can be found in table 3.

5.2.2 Update rate adaptation with the Frenet-Serret trajectory

The present experiment serves as an example for other models than the Singer model,
that are nonlinear, have to be estimated using a nonlinear filtering algorithm and cannot
have the same properties of convergence than the linear Kalman filter. The duration
between two consecutive measurements can vary from Tmax = 5s to Tmin = 0.005s. We
perform again the simulations with the Blackman Van Keuk fixed criterion and with the
adaptive algorithm. The results are presented in the following paragraphs. The values
of the other parameters are gathered in table 1.

Fixed criterion The results are given on fig. 8a and fig. 9a. We can allow the duration
between the measurements up to T = 5s on some portions of the trajectory.
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(a) Fixed criterion (b) Adaptive criterion

Figure 8: Comparison of the duration between two measurements for the Frenet-Serret
model, with the fixed criterion on fig. 8a and the adaptive one on fig. 8b. The experi-
ments give two different behaviours of the duration between two observations. Indeed,
the fixed criterion is not suited to this model, and the adaptive criterion is required, as
it directly minimizes Lc, contrary to the fixed criterion

(a) Fixed criterion (b) Adaptive criterion

Figure 9: Comparison of the covariances for the angular coordinate for the Frenet-
Serret model, with the fixed criterion on fig. 9a and for the adaptive criterion fig. 9b.
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Parameter Value

PF 10−6

SN0 40
B 0.0175
s 0.72

Table 1: Parameters for the update rate adaptation

Adaptive criterion Thanks to (21), we can compute the threshold s = 0.72 that we
apply for the adaptive algorithm. The results are presented in fig. 8b. The angular
covariances are also displayed in fig. 9. In this case, the covariances computed are still
very similar, because they are the result of the filter, and the difference is due to the
period of refreshment.

However, contrary to the Singer model, the update rate results are quite different.
The duration between maneuvers is often lower for the adaptive criterion, however, the
number of necessary illuminations to find a target again is also lower. We see that the
two algorithms lead to two different strategies, even though the general form of the
adaptation is the same.

Optimization ratio The optimization rate Lc is again computed with 100 Monte-
Carlo simulations for the fixed and adaptive algorithms. The radar loads Lc obtained for
the Frenet-Serret model are again collected in table 2. This shows that the optimization
is much better with an adaptive criterion, and that the fixed criterion is not sufficient
to perform a proper update rate adaptation algorithm. The difference between the rates
multiplied by the number of possible targets in a challenging scenario is therefore not
negligible at all. The position RMSE are also collected in table 3, again no loss in the
performances is observed.

Fixed criterion Adaptive criterion

Linear model (Kalman filter) 0.20 0.16
Nonlinear model (IEKF) 0.44 0.25

Table 2: Radar load Lc computed for the experiments presented in this paper

Fixed criterion Adaptive criterion

Linear model (Kalman filter) 120 70
Nonlinear model (IEKF) 105 104

Table 3: Position RMSE (in m) computed for the experiments presented in this paper
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6 Discussion
The results obtained in the previous section show that the fixed criterion of Blackman
and Van Keuk and the adaptive criterion proposed in this paper are equivalent for the
Singer model. However, with nonlinear target models, the adaptive algorithm performs
better than the fixed one as anticipated. This saves the radar beam time budget: the
update rate can be more decreased than when it is fixed, and the adaptive criterion
algorithm is better suited to nonlinear models and algorithms than the fixed one.

However, such adaptation algorithms can only adapt the update rate once the per-
formances are beginning to decrease, it is thus not suited to detect or track high and
abrupt maneuvers. It is designed to detect a degradation in the filter’s confidence of
its own estimations, and to increase the update rate, so that the filter is updated more
often, and the target has a higher probability to be in the radar beam for the next mea-
surement, and so less energy is spent to find it again. Moreover, the covariance of the
filter needs to be quite accurate, since it feeds the update rate adaptation algorithm. If
the filter diverges, this means the covariance is not accurate anymore, so the update rate
adaptation fails along with the filter.

This is corroborated by the results obtained in the previous section. Indeed, the
update rate is not necessarily modified only during maneuvers, but more generally
whenever the covariance of the filtering algorithm is increasing.

7 Conclusion
In this paper, we have first recalled the equations of the Singer model and of the linear
Kalman filter. We have pedagogically explained the derivation of the criterion of [1].
This criterion being fit only to the particular Singer model, we have adapted it to suit
other types of models and estimation algorithms. This is required for industrial appli-
cations, since nonlinear target models are used. We have then applied the algorithm
proposed to a model based on intrinsic coordinates, relying on the Frenet-Serret frame,
along with an Invariant Extended Kalman Filter, which possess more stability proper-
ties than the standard EKF. The results both with the Singer model and the Frenet-Serret
model corroborate the accuracy of the adaptive algorithm. The fixed and adaptive al-
gorithms give the same results on the Singer model, and the adaptive algorithm gives
better results on the Frenet-Serret model.

To develop the adaptive update rate algorithm, we have used the same optimization
criterion as in [1]. This criterion assumes the radar has a pencil beam, and the target
search method is to look in a neighbourhood of the first guess given by the estimation
algorithm. This search method is the optimal one, as stated in [1], so the same search
method is used in this paper. These two assumptions have not be questioned in the
paper, but future work would be to have another optimization function to take into
account the new possibilities of the newer generations of radars ,that are becoming even
more cognitive, including the fact that future radars will not necessarily be equipped
with pencil beams, and so the radar load will have to be expressed differently.
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Appendix: Matrix Lie Groups

General definitions
A matrix Lie group G is a set of invertible matrices, stable by multiplication and inver-
sion, and differentiable. The differentiability allows to define the Lie algebra g associ-
ated to the group, which is the tangent space at the neutral element. The Lie algebra
is an R-algebra, which means that it is a vectorial space with an intern multiplication
which is bilinear. For a matrix Lie group, it is possible to represent the vectors of the
Lie algebra under the form of a matrix, that is strictly equivalent, but may be more
convenient to write the operations.

Group of 3D rotations SO(3)

The group of rotations SO(3) is composed of the rotation matrices of dimension 3×3:
SO(3) = {R ∈M3|RRT = RT R = I3,det(R) = 1}. The associated Lie algebra is of
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dimension 3 and is defined by:

so(3) =


 0 −c b

c 0 −a
−b a 0

 ,

a
b
c

 ∈ R3


It is now possible to define the notation (.)×. This notation comes from the fact that
there exists a bijection between so(3) and R3. And an element of so(3) can be equiva-
lently represented by a vector in R3. The bijection is denoted (.)×. If ω ∈ R3, then

(ω)× =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


One also needs the definition of the matrix exponential exp : so(3) → SO(3). Let
Ω ∈ so(3), and θ = ‖Ω‖. The exponential map is:

exp(Ω) = I3 +
sinθ

θ
Ω+

1− cosθ

θ 2 Ω
2

Group of 3D rotations and translations SE(3)

SE(3) is the group that describes the possible motions of point mass in the 3D space.
It represents the rotations and the translations:

SE(3) =
{(

R x
01,3 1

)
,R ∈ SO(3),x ∈ R3

}
The associated Lie algebra is of dimension 6 and is defined by:

se(3) =




0 −c b α

c 0 −a β

−b a 0 γ

0 0 0 0

 ,

a
b
c

 ∈ R3,

α

β

γ

 ∈ R3


The exponential map of (ω,u) ∈ R3×R3 is defined as follows

exp
(
(ω)× u

0 0

)
=

(
exp((ω)×) Vu

0 1

)
with θ =

√
ωT ω and

V = I3 +
1− cosθ

θ 2 (ω)×+
θ − sinθ

θ 3 (ω)2
×
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