Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A computational framework to study sub-cellular RNA localization

Abstract : RNA localization is a crucial process for cellular function and can be quantitatively studied by single molecule FISH (smFISH). Here, we present an integrated analysis framework to analyze sub-cellular RNA localization. Using simulated images, we design and validate a set of features describing different RNA localization patterns including polarized distribution, accumulation in cell extensions or foci, at the cell membrane or nuclear envelope. These features are largely invariant to RNA levels, work in multiple cell lines, and can measure localization strength in perturbation experiments. Most importantly, they allow classification by supervised and unsupervised learning at unprecedented accuracy. We successfully validate our approach on representative experimental data. This analysis reveals a surprisingly high degree of localization heterogeneity at the single cell level, indicating a dynamic and plastic nature of RNA localization.
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger
Contributeur : Thomas Walter <>
Soumis le : jeudi 27 février 2020 - 09:15:01
Dernière modification le : mercredi 14 octobre 2020 - 03:40:07
Archivage à long terme le : : jeudi 28 mai 2020 - 12:54:41


Publication financée par une institution


Distributed under a Creative Commons Paternité 4.0 International License



Aubin Samacoits, Racha Chouaib, Adham Safieddine, Abdel-Meneem Traboulsi, Christophe Zimmer, et al.. A computational framework to study sub-cellular RNA localization. Nature Communications, Nature Publishing Group, 2018, 9 (1), pp.4584. ⟨10.1038/s41467-018-06868-w⟩. ⟨hal-01984014⟩



Consultations de la notice


Téléchargements de fichiers