A computational framework to study sub-cellular RNA localization - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Communications Année : 2018

A computational framework to study sub-cellular RNA localization

(1, 2) , (3, 4) , (3, 4) , (3, 4) , (1, 2) , (1, 2) , (3, 4) , (3, 4) , (5, 6, 7) , (1, 2)
1
2
3
4
5
6
7

Résumé

RNA localization is a crucial process for cellular function and can be quantitatively studied by single molecule FISH (smFISH). Here, we present an integrated analysis framework to analyze sub-cellular RNA localization. Using simulated images, we design and validate a set of features describing different RNA localization patterns including polarized distribution, accumulation in cell extensions or foci, at the cell membrane or nuclear envelope. These features are largely invariant to RNA levels, work in multiple cell lines, and can measure localization strength in perturbation experiments. Most importantly, they allow classification by supervised and unsupervised learning at unprecedented accuracy. We successfully validate our approach on representative experimental data. This analysis reveals a surprisingly high degree of localization heterogeneity at the single cell level, indicating a dynamic and plastic nature of RNA localization.
Fichier principal
Vignette du fichier
a_computational_framework.pdf (1.99 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

hal-01984014 , version 1 (27-02-2020)

Licence

Paternité - CC BY 4.0

Identifiants

Citer

Aubin Samacoits, Racha Chouaib, Adham Safieddine, Abdel-Meneem Traboulsi, Christophe Zimmer, et al.. A computational framework to study sub-cellular RNA localization. Nature Communications, 2018, 9 (1), pp.4584. ⟨10.1038/s41467-018-06868-w⟩. ⟨hal-01984014⟩
119 Consultations
94 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More