Novel Methods for Epistasis Detection in Genome-Wide Association Studies

Abstract : As the size of genome-wide association studies (GWAS) increases, detecting interactions among single nucleotide polymorphisms (SNP) or genes associated to particular phenotypes is garnering more and more interest as a means to decipher the full genetic basis of complex diseases. Systematically testing interactions is however challenging both from a computational and from a statistical point of view, given the large number of possible interactions to consider. In this paper we propose a framework to identify pairwise interactions with a particular target variant, using a penalized regression approach. Narrowing the scope of interaction identification around a predetermined target provides increased statistical power and better interpretability, as well as computational scalability. We compare our new methods to state-of-the-art techniques for epistasis detection on simulated and real data, and demonstrate the benefits of our framework to identify pairwise interactions in several experimental settings.
Liste complète des métadonnées

Littérature citée [57 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01984919
Contributeur : Chloé-Agathe Azencott <>
Soumis le : jeudi 17 janvier 2019 - 14:17:05
Dernière modification le : mardi 30 avril 2019 - 09:52:04

Fichier

slim2018.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Lotfi Slim, Clement Chatelain, Chloé-Agathe Azencott, Jean-Philippe Vert. Novel Methods for Epistasis Detection in Genome-Wide Association Studies. 2019. ⟨hal-01984919⟩

Partager

Métriques

Consultations de la notice

115

Téléchargements de fichiers

185