T. A. Manolio, F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff et al., Finding the missing heritability of complex diseases, Nature, vol.461, pp.747-753, 2009.

M. I. Mccarthy and J. N. Hirschhorn, , 2008.

, Genome-wide association studies: potential next steps on a genetic journey, Human Molecular Genetics, vol.17, pp.156-165

O. Zuk, E. Hechter, S. R. Sunyaev, and E. S. Lander, The mystery of missing heritability: Genetic interactions create phantom heritability, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.1193-1201, 2012.

E. Zeggini, L. J. Scott, R. Saxena, B. F. Voight, J. L. Marchini et al., Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes, Nature Genetics, vol.40, pp.638-645, 2008.

D. F. Gudbjartsson, G. B. Walters, G. Thorleifsson, H. Stefansson, B. V. Halldorsson et al., Many sequence variants affecting diversity of adult human height, Nature Genetics, vol.40, pp.609-615, 2008.

O. Combarros, M. Cortina-borja, A. D. Smith, and D. J. Lehmann, Epistasis in sporadic alzheimer's disease, Neurobiology of Aging, vol.30, pp.1333-1349, 2009.

R. A. Fisher, XV.-the correlation between relatives on the supposition of mendelian inheritance, Transactions of the Royal Society of Edinburgh, vol.52, pp.399-433, 1919.

H. J. Cordell, Detecting genegene interactions that underlie human diseases, Nature Reviews Genetics, vol.10, pp.392-404, 2009.

C. Niel, C. Sinoquet, C. Dina, and G. Rocheleau, A survey about methods dedicated to epistasis detection, Frontiers in Genetics, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01205577

J. H. Moore and S. M. Williams, Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis, BioEssays, vol.27, pp.637-646, 2005.

M. Emily, AGGrEGATOr: A Gene-based GEne-Gene interActTiOn test for case-control association studies, Statistical Applications in Genetics and Molecular Biology, vol.15, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01305418

R. J. Cabin and R. J. Mitchell, To bonferroni or not to bonferroni: when and how are the questions, Bulletin of the Ecological Society of America, vol.81, pp.246-248, 2000.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society. Series B (Methodological), vol.57, pp.289-300, 1995.

S. Nakagawa, A farewell to bonferroni: the problems of low statistical power and publication bias, Behavioral Ecology, vol.15, pp.1044-1045, 2004.

C. Chatelain, G. Durand, V. Thuillier, A. , and F. , Performance of epistasis detection methods in semi-simulated GWAS, BMC Bioinformatics, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01832976

X. Wan, C. Yang, Q. Yang, H. Xue, X. Fan et al., BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies, American Journal of Human Genetics, vol.87, pp.325-340, 2010.

L. S. Yung, C. Yang, X. Wan, Y. , and W. , GBOOST: a GPU-based tool for detecting genegene interactions in genomewide case control studies, Bioinformatics, vol.27, pp.1309-1310, 2011.

G. Thanei, N. Meinshausen, and R. D. Shah, The xyz algorithm for fast interaction search in high-dimensional data, Journal of Machine Learning Research, vol.19, pp.1-42, 2018.

B. R. Winkelmann, W. März, B. O. Boehm, R. Zotz, J. Hager et al., Rationale and design of the LURIC study-a resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease, Pharmacogenomics, vol.2, pp.1-73, 2001.

R. Tibshirani, I. Johnstone, T. Hastie, E. , and B. , Least angle regression, The Annals of Statistics, vol.32, pp.407-499, 2004.

J. Bien, J. Taylor, and R. Tibshirani, A lasso for hierarchical interactions, The Annals of Statistics, vol.41, pp.1111-1141, 2013.

D. B. Rubin, Estimating causal effects of treatments in randomized and nonrandomized studies, Journal of Educational Psychology, vol.66, pp.688-701, 1974.

P. Scheet and M. Stephens, A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase, American journal of human genetics, vol.78, 2006.

Y. Zhao, D. Zeng, A. J. Rush, and M. R. Kosorok, Estimating Individualized Treatment Rules Using Outcome Weighted Learning, Journal of the American Statistical Association, vol.107, pp.1106-1118, 2012.

L. Tian, A. A. Alizadeh, A. J. Gentles, and R. Tibshirani, A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates, Journal of the American Statistical Association, vol.109, pp.1517-1532, 2014.

J. K. Lunceford and M. Davidian, Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study, Statistics in Medicine, vol.23, pp.2937-2960, 2004.

P. C. Austin and E. A. Stuart, Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies, Statistics in Medicine, vol.34, pp.3661-3679, 2015.

S. Purcell, B. Neale, K. Todd-brown, L. Thomas, M. A. Ferreira et al., PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses, The American Journal of Human Genetics, vol.81, pp.559-575, 2007.

C. Herold, M. Steffens, F. F. Brockschmidt, M. P. Baur, and T. Becker, Intersnp: genome-wide interaction analysis guided by a priori information, Bioinformatics, vol.25, pp.3275-3281, 2009.

N. M. Gatto, Further development of the case-only design for assessing gene-environment interaction: evaluation of and adjustment for bias, International Journal of Epidemiology, vol.33, pp.1014-1024, 2004.

W. W. Piegorsch, C. R. Weinberg, T. , and J. A. , Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies, Statistics in Medicine, vol.13, pp.153-162, 1994.

Q. Yang, M. J. Khoury, F. Sun, and W. D. Flanders, Case-only design to measure gene-gene interaction, Epidemiology, vol.10, pp.167-70, 1999.

S. Sun, C. M. Greenwood, N. , and R. M. , Haplotype inference using a bayesian hidden markov model, Genetic Epidemiology, vol.31, pp.937-948, 2007.

P. Rastas, M. Koivisto, H. Mannila, and E. Ukkonen, A hidden markov technique for haplotype reconstruction, Lecture Notes in Computer Science In Lecture Notes in Computer Science, 2005.

S. B. Gabriel, The structure of haplotype blocks in the human genome, Science, vol.296, pp.2225-2229, 2002.

R. F. Barber and E. J. Candès, Controlling the false discovery rate via knockoffs, The Annals of Statistics, vol.43, pp.2055-2085, 2015.

M. Sesia, C. Sabatti, C. , and E. J. , Gene hunting with hidden markov model knockoffs, Biometrika, 2018.

S. R. Cole and M. A. Hernan, Constructing inverse probability weights for marginal structural models, American Journal of Epidemiology, vol.168, pp.656-664, 2008.

B. K. Lee, J. Lessler, and E. A. Stuart, Weight trimming and propensity score weighting, PLoS ONE, vol.6, 2011.

L. R. Rabiner, A tutorial on hidden markov models and selected applications in speech recognition, Proceedings of the IEEE, vol.77, pp.257-286, 1989.

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.67, pp.301-320, 2005.

A. C. Haury, F. Mordelet, P. Vera-licona, and J. P. Vert, TIGRESS: Trustful Inference of Gene REgulation using Stability Selection, BMC Systems Biology, vol.6, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00797206

J. Friedman, T. Hastie, and R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, Journal of Statistical Software, vol.33, 2010.

N. J. Schork, S. S. Murray, K. A. Frazer, and E. J. Topol, Common vs. rare allele hypotheses for complex diseases, Current Opinion in Genetics & Development, vol.19, pp.212-219, 2009.

Z. Su, J. Marchini, and P. Donnelly, HAPGEN2: simulation of multiple disease SNPs, Bioinformatics, vol.27, pp.2304-2305, 2011.

A. E. Auton, A global reference for human genetic variation, Nature, vol.526, pp.68-74, 2015.

P. R. Burton, , 2007.

, Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls, Nature, vol.447, pp.661-678

T. Saito and M. Rehmsmeier, Precrec: fast and accurate precision-recall and ROC curve calculations in r, Bioinformatics, vol.33, pp.145-147, 2016.

J. Davis and M. Goadrich, The relationship between Precision-Recall and ROC curves, Proceedings of the 23rd international conference on Machine learning-ICML '06 pp, pp.233-240, 2006.
DOI : 10.1145/1143844.1143874

URL : https://minds.wisconsin.edu/bitstream/1793/60482/1/TR1551.pdf

M. Le-morvan and J. Vert, WHInter: A working set algorithm for high-dimensional sparse second order interaction models, Proceedings of the 35th International Conference on Machine Learning, pp.3632-3641, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01711018

M. Massias, A. Gramfort, and J. Salmon, Celer: a Fast Solver for the Lasso with Dual Extrapolation, ICML 2018-35th International Conference on Machine Learning, vol.80, pp.3321-3330, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01833398

E. A. Boyle, Y. I. Li, and J. K. Pritchard, An expanded view of complex traits: From polygenic to omnigenic, Cell, vol.169, pp.1177-1186, 2017.
DOI : 10.1016/j.cell.2017.05.038

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5536862

C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott et al., Genome-wide genetic data on 500, 2017.

S. Athey, G. W. Imbens, and S. Wager, Approximate residual balancing: debiased inference of average treatment effects in high dimensions, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2018.

A. P. Dempster, N. M. Laird, R. , and D. B. , Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society. Series B (Methodological), vol.39, pp.1-38, 1977.
DOI : 10.1111/j.2517-6161.1977.tb01600.x