Novel Methods for Epistasis Detection in Genome-Wide Association Studies - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue PLoS ONE Année : 2020

Novel Methods for Epistasis Detection in Genome-Wide Association Studies

(1, 2) , (2) , (1) , (1)
1
2
Clement Chatelain
Jean-Philippe Vert
Chloé-Agathe Azencott

Résumé

As the size of genome-wide association studies (GWAS) increases, detecting interactions among single nucleotide polymorphisms (SNP) or genes associated to particular phenotypes is garnering more and more interest as a means to decipher the full genetic basis of complex diseases. Systematically testing interactions is however challenging both from a computational and from a statistical point of view, given the large number of possible interactions to consider. In this paper we propose a framework to identify pairwise interactions with a particular target variant, using a penalized regression approach. Narrowing the scope of interaction identification around a predetermined target provides increased statistical power and better interpretability, as well as computational scalability. We compare our new methods to state-of-the-art techniques for epistasis detection on simulated and real data, and demonstrate the benefits of our framework to identify pairwise interactions in several experimental settings.
Fichier principal
Vignette du fichier
slim2020.pdf (953.29 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01984919 , version 1 (17-01-2019)
hal-01984919 , version 2 (18-01-2021)

Identifiants

Citer

Lotfi Slim, Clement Chatelain, Jean-Philippe Vert, Chloé-Agathe Azencott. Novel Methods for Epistasis Detection in Genome-Wide Association Studies. PLoS ONE, 2020, 15 (11), pp.e0242927. ⟨10.1371/journal.pone.0242927⟩. ⟨hal-01984919v2⟩
239 Consultations
415 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More