An explicit mapping from linear first order hyperbolic PDEs to difference systems

Abstract : In this paper, we prove that the space generated by the solutions of a general class of first-order hyperbolic PDEs is isomorphic to the space generated by the solutions of a difference equation with distributed delays. This difference equation is obtained using a backstepping approach (combining a Volterra transformation of the second kind and an invertible Fredholm transformation) and the method of characteristics. Moreover, we prove that the stability properties are equivalent between the two systems. An important by-product is the design of a delay-robust stabilizing control law.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-02014310
Contributeur : François Chaplais <>
Soumis le : lundi 11 février 2019 - 15:23:09
Dernière modification le : vendredi 22 mars 2019 - 10:20:04

Identifiants

  • HAL Id : hal-02014310, version 1

Citation

Jean Auriol, Florent Di Meglio. An explicit mapping from linear first order hyperbolic PDEs to difference systems. Systems and Control Letters, Elsevier, 2019, 123, pp.144-150. ⟨hal-02014310⟩

Partager

Métriques

Consultations de la notice

43