The CERN Proton Irradiation Facility IRRAD during and after the CERN Long Shutdown 2

Brethoux, Damien (CERN) et al

14 January 2019

The AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

This work is part of AIDA-2020 Work Package 15: Upgrade of beam and irradiation test infrastructure.

Copyright © CERN for the benefit of the AIDA-2020 Consortium
The CERN Proton Irradiation Facility IRRAD during and after the CERN Long Shutdown 2

D. Brethoux¹, J. Bronuzzi²&³, B. Gkotse²&⁴, M. Glaser², G. Gorine²&³, P. Jouvelot³, M.R. Jaekel², M. Lazzaroni¹, I. Mateu², E. Matli⁵, G. Pezzullo², F. Ravotti²

¹ CERN EN
² CERN EP
³ EPFL
⁴ MINES ParisTech
⁵ CERN BE
Outline

- IRRAD Facility & Summary Proton Run 2018
- IRRAD Data Manager
- IRRAD Infrastructure Upgrades (AIDA-2020 D15.7)
- Heavy Ions Run 2017-2018
- Activities during LS2
Proton Irradiation Facility IRRAD

- Testing inner detector components of the HEP experiments
- Beam of 24 GeV/c and size of 12×12 mm²
- Spills of ~400 msec every ~10 sec
- Fluence of 1×10^{16} p/cm² in 14 days
- Scanning up to dimensions of 10×10cm²
- Cryostat with LHe 1.9K
- Low T irradiations (-25°C)
IRRAD: Summary Run 2018

- **81 experiments completed in 2018:**
 - **92 users** registered in the IRRAD Data Manager (cern.ch/irrad-data-manager)
 - **996 objects** declared by the users
 - **792 objects** irradiated
IRRAD: Summary Run 2018

Piezo actuators for Crystal Collimation, Vacuum, Cryogenics, etc. (EN,TE)

RD53A modules for ATLAS ITk

CLARO ASIC for the LHCb RICH Upgrade

2x FEAST2 DC/DC converters test in cold-box & RT with “thin” 10mm Cu target (EP-ESE)

1MeV eq. Φ simulation with Cu-target
Outline

- IRRAD Facility & Summary Proton Run 2018
- IRRAD Data Manager
- IRRAD Infrastructure Upgrades (AIDA-2020 D15.7)
- Heavy Ions Run 2017-2018
- Activities during LS2
IRRAD Data Manager (IDM)

cern.ch/irrad-data-manager

Facility Operation (During)

Dosimetry Results & Archive (After)

Traceability (Before)
IDM: Key Features

- Experiments, samples, users and dosimeters registration
- Label printing
- Real-time follow-up of irradiation experiments
- Computation of proton interaction parameters
- Display and archive of dosimetry result (~600 spectrometry measurements/year)
- User Interface preferences customization
- History and details of past experiments (with user permission)
- Can be used also for irradiations in other facilities (PSI)
IDM: Irradiation Experiments View

Before
IDM: Samples View

cern.ch/irrad-data-manager
IDM: Irradiation Status View

The image shows the interface of the IRRAD Data Manager for viewing irradiation status. The interface includes a table with the following columns:

- **IDM**: Irradiation Status View
- **Created at**: Date and time of the record
- **Sample**: Name of the sample
- **Dosimeter**: Type of dosimeter
- **DATE IN - DATE OUT**: Date range of irradiation
- **IRRAD Table**: Name of the irradiation table
- **Table Position**: Position of the sample in the table
- **Accumulated Fluence**: Total fluence received by the sample
- **SEC**: ID of the responsible person
- **Updated by**: Person who last updated the record
- **Status**: Current status of the sample (e.g., Registered)
- **In Beam**: Indicator of whether the sample is in the beam
- **Actions**: Options to edit or delete the record

Example Entries

<table>
<thead>
<tr>
<th>Created at</th>
<th>Sample</th>
<th>Dosimeter</th>
<th>DATE IN - DATE OUT</th>
<th>IRRAD Table</th>
<th>Table Position</th>
<th>Accumulated Fluence</th>
<th>SEC</th>
<th>Updated by</th>
<th>Status</th>
<th>In Beam</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/11/2018</td>
<td>SET-003899</td>
<td>DOS-004211</td>
<td>15/11/2018 16:11 -</td>
<td>IRRAD19</td>
<td>Center</td>
<td>272851</td>
<td>irradiation.factories@cern.ch</td>
<td>Registered</td>
<td>On</td>
<td>Edit, Delete</td>
<td></td>
</tr>
<tr>
<td>15/11/2018</td>
<td>SET-003900</td>
<td>DOS-004211</td>
<td>15/11/2018 16:11 -</td>
<td>IRRAD19</td>
<td>Center</td>
<td>272851</td>
<td>irradiation.factories@cern.ch</td>
<td>Registered</td>
<td>On</td>
<td>Edit, Delete</td>
<td></td>
</tr>
<tr>
<td>15/11/2018</td>
<td>SET-003901</td>
<td>DOS-004211</td>
<td>15/11/2018 16:11 -</td>
<td>IRRAD19</td>
<td>Center</td>
<td>272851</td>
<td>irradiation.factories@cern.ch</td>
<td>Registered</td>
<td>On</td>
<td>Edit, Delete</td>
<td></td>
</tr>
<tr>
<td>15/11/2018</td>
<td>SET-003902</td>
<td>DOS-004211</td>
<td>15/11/2018 16:11 -</td>
<td>IRRAD19</td>
<td>Center</td>
<td>272851</td>
<td>irradiation.factories@cern.ch</td>
<td>Registered</td>
<td>On</td>
<td>Edit, Delete</td>
<td></td>
</tr>
<tr>
<td>15/11/2018</td>
<td>SET-003903</td>
<td>DOS-004211</td>
<td>15/11/2018 16:11 -</td>
<td>IRRAD19</td>
<td>Center</td>
<td>272851</td>
<td>irradiation.factories@cern.ch</td>
<td>Registered</td>
<td>On</td>
<td>Edit, Delete</td>
<td></td>
</tr>
</tbody>
</table>
IDM: Dosimetry Results View

cern.ch/irrad-data-manager
IDM: Experiments History View

cern.ch/irrad-data-manager
Ontology-based Graphical User Interface Generation

- Purpose: Formalisation of knowledge gained from IDM and application to other irr. facilities
- Irradiation experiment model (ontology) → Automatic User Interfaces (UI) generation → Machine learning techniques for UI customisation

PhD Thesis with MINES ParisTech
Outline

- IRRAD Facility & Summary Proton Run 2018
- IRRAD Data Manager
- IRRAD Infrastructure Upgrades (AIDA-2020 D15.7)
 - Damage and Degradation of equipment
 - Sample Holders for Higher Fluence Levels
 - RadHard Instrumentation for IRRAD (μ-BPM)
- Heavy Ions Run 2017-2018
- Activities during LS2
Damage and Degradation Equipment

Infrastructure damage and degradation is accelerated due to the need of operating with always higher intensities (~2e18 protons on target in 4 years and ~30% of experiments in the range of 1e16-1e17 protons/cm² in 2018)

See I. Mateu in AIDA-2020 WP15 satellite meeting
Sample Holders for Higher Fluence Levels (AIDA-2020 D15.7)

Before Irradiation

After Irradiation $\sim 2 \times 10^{17}$ p/cm2

Standard cardboard

Carbon Fiber

ULTEM

See I. Mateu in AIDA-2020 WP15 satellite meeting

Stress Test
RadHard Instrumentation for IRRAD (μ-BPM)
(AIDA-2020 D15.7)

- Today’s mini-BPMs are produced with standard PCB manufacturing techniques, and show:
 - **big degradation** due to glue bubbling/burning
 - Need to change **INSULATING MATERIAL** without glue
 - (relatively) low “transparency” to the beam
 - very radioactive and long cool-down required
 - Need to reduce **THICKNESS OF METAL**

- This is possible using microfabrication techniques!

Mini-BPM: 6 layers 0.5 mm thick ~100 um of Cu

Micro-BPM: 6 layers 0.2 mm thick, 0.6 um of Al

RadHard Instrumentation for IRRAD (μ-BPM) (AIDA-2020 D15.7)

Mini-BPM (Old) Micro-BPM (New)

X profile

Y profile
Outline

- IRRAD Facility & Summary Proton Run 2018
- IRRAD Data Manager
- IRRAD Infrastructure Upgrades (AIDA-2020 D15.7)
- Heavy Ions Run 2017-2018
- Activities during LS2
Heavy Ion (HI) Runs 2017-18

- 2 weeks with 54Xe in 2017, 3 weeks with 82Pb
 - Energy per nucleon: ~ 6 GeV/n
 - Ion flux: ~ 10^8 to 10^9 ions/spill

- Radiation Hardness tests of Space Electronics Components (CHARM)
 - Highly penetrating (SEE testing)
 - Representative of Galactic Cosmic Ray spec.

"Samples on the CHARM conveyor (run 2018)"

- Ion dosimetry is a complex business!
 - PS instrumentation not calibrated
 - Lack of experience & methodologies

- Promote HI tests in East Area after LS2
 - Improve the dosimetry!
 - Build a use case with interested EP experiments?
 - Potential users in the Test-Beams community?
Outline

- IRRAD Facility & Summary Proton Run 2018
- IRRAD Data Manager
- IRRAD Infrastructure Upgrades (AIDA-2020 D15.7)
- Heavy Ions Run 2017-2018
- Activities during LS2
IRRAD during LS2

- **East Area Consolidation Project**
 - Upgrade of East Area Beam Instrumentation
 - Modification of EA water network
 - ...

- **IRRAD-specific improvements**
 - Mandatory *preventive maintenance* of all irradiation systems
 - Including the software infrastructure (Online display, BPM DAQ, control systems, etc…)
 - Refurbishment/upgrade of degraded irradiation equipment
 - Repair/exchange one Huber chiller unit
 - Replace cooling boxes, setup VORTEX, etc..
 - Inventory of radioactive material in our storage areas (bld. 13/14/157)
 - Contacting users for their samples
IRRAD during LS2

Instruments for measuring and characterizing radioactive material:
- Suss PM8 Probe Station (Available to the users)
- Keithley 4200A Semiconductor Parameter Analyzer (Available to the users)
- Climatic chamber (Purchased)
- γ-spectrometer (To be installed)
- etc.
IRRAD during LS2

- Setup a dedicated laboratory (for probe-station setup, climatic chamber, γ-spectrometer, etc.)
- Increase storage and material handling space

Extension of the IRRAD Technical Area (Project under study),

EP-DT in collaboration with EN-EA
Pion Irradiations at PSI

- IRRAD not operational until spring 2021
- Possibility of pion irradiations at PSI under evaluation:
 - $\pi^+ 300 \text{ MeV/c}$
 - Typical max fluence level in the range of some $1 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$
 - Variable beam spot along the beam axis
- Stay updated at cern.ch/ps-irrad!
Conclusions

- First run (2014-2018) of the “new” IRRAD facility was successful
- Significant milestones achieved:
 - New IRRAD Data Manager System fully operational
 - Advancements in beam instrumentation and irradiation equipment R&D (AIDA-2020)
 - Possibility to perform experiments with Heavy Ions after LS2?
 - etc.
- IRRAD not operational during LS2 (2019-2021)
- Activities during LS2 for IRRAD:
 - Maintenance, upgrade and consolidation
 - Extension of the technical area (handling & measurement of irradiated samples)
- Possible pion irradiations in PSI organized by the IRRAD team in EP-DT