M. Akita, Y. Uematsu, T. Kakiuchi, M. Nakajima, and R. Kawaguchi, Defectdominated fatigue behavior in type 630 stainless steel fabricated by selective laser melting, Material Science and Engineering A, vol.666, pp.19-26, 2016.

I. A. Aksay, J. A. Pask, and R. F. Davis, Densities of melts, Journal of American Ceramic Society, vol.62, pp.332-336, 1979.

M. Ashby, H. Shercliff, and D. Cebon, Matériaux : ingénierie, science, procédé et conception, Presses polytechniques et universitaires romandes, 2013.

M. Averyanova, P. Bertrand, and B. Verquin, Manufacture of Co-Cr dental crowns and bridges by selective laser melting technology, Virtual and Physical Prototyping, vol.6, pp.179-185, 2011.

V. K. Bityukov and V. Petrov, Absorption coefficient of molten aluminum oxide in semitransparent spectral range, Applied Physics Research, vol.5, pp.51-71, 2013.

. L-r-c-i-o, É ud xpé im héo iqu d 'émissio i f oug d céramiques à haute température. Application aux barrières thermiques

M. W. Chase, Thermochemical tables, 1998.

Q. Chen, G. Guillemot, .. Ch, M. Gandin, and . Bellet, Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramic materials, Additive Manufacturing, vol.16, pp.124-137, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01552410

Y. Hagedorn, J. Wilkes, W. Meiners, K. Wissenbach, and R. Poprawe, Net shape high performance oxide ceramic parts by selective laser melting, Physics Procedia, vol.5, pp.587-594, 2010.

N. J. Harrison, I. Todd, and K. Mumtaz, Reduction of micro-cracking in nickel supperalloys processed by selective laser melting: a fundamental alloy design approach, Acta Materialia, vol.94, pp.59-68, 2015.

S. A. Khairallah and A. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, Journal of Material Processing Technology, vol.214, pp.2627-2636, 2014.

S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Journal of Materials Processing Technology, vol.108, pp.978-987, 2016.

D. Langstaff, M. Gunn, G. N. Greaves, A. Marsing, and F. Kargl, Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids, Review of Scientific Instrument, vol.84, p.124901, 2013.

J. Lawrence, An analysis of the beam interaction characteristics of selected lasers with an alpha-alumina bioceramics, Optics & Lasers in Engineering, vol.41, pp.505-514, 2004.

J. F. Li, L. Li, and F. H. Stott, A three-dimensional numerical model for a convectiondiffusion phase change process during laser melting of ceramic materials, International Journal of Heat and Mass Transfer, vol.47, pp.5523-5539, 2004.

J. F. Li, L. Li, and F. H. Stott, Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials, International Journal of Heat and Mass Transfer, vol.47, pp.1159-1174, 2004.

R. Li, J. Liu, Y. Shi, L. Wang, and W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process, The International Journal of Advanced Manufacturing Technology, vol.59, pp.1025-1035, 2012.

Y. J. Liu, S. J. Li, H. L. Wang, W. T. Hou, Y. L. Hao et al., Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting, Acta Materialia, vol.113, pp.56-67, 2016.

M. J. Matthews, G. Guss, S. A. Khairallah, A. M. Rubenchik, P. J. Depond et al., Denudation of metal powder layers in laser powder bed fusion processes, Acta Materialia, vol.114, pp.33-42, 2016.

L. Moniz, C. Colin, J. Bartout, K. Terki, and M. Berger, Laser Beam Melting of Alumina: Effect of Absorber Additions, JOM, vol.70, pp.1-8, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01723008

E. O. Olakanmi, R. F. Cochrane, and K. W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure, and properties, Progress in Material Science, vol.74, pp.401-477, 2015.

P. Paradis and T. Ishikawa, Surface tension and viscosity measurements of liquid and undercooled alumina by containerless techniques, The Japan Society of Applied Physics, vol.44, pp.5082-5085, 2005.

H. Schwab, F. Palm, U. Kühn, and J. Eckert, Microstructure, mechanical properties of the near-beta titanium alloy Ti-5553 processed by selective laser melting, Material & Design, vol.105, pp.75-80, 2016.

D. Sola and J. Peña, Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range, Materials, vol.6, issue.11, pp.5302-5313, 2013.

Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. T. Lee, Thermal expansionnonmetallic solids, Thermophysical Properties of Matter, vol.13, pp.176-177, 1984.

J. Trapp, A. M. Rubenchik, G. Guss, and M. J. Matthews, In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing, Applied Materials Today, vol.9, pp.341-349, 2017.

D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang et al., Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties, Materials & Design, vol.117, pp.121-130, 2017.

P. Yuan and D. Gu, Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: Simulation and experiments, Journal of Physics D: Applied Physics, vol.48, p.35303, 2015.