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FINITE DEFORMATION CONSTITUTIVE RELATIONS
INCLUDING DUCTILE FRACTURE DAMAGE

G. ROUSSELIER

Electricité de France, Moret-sur-Loing, France

Constitutive relations are developed for finite deformation of plastically dilatant
materials. These relations, which model the ductile fracture of metals, are derived from
the macroscopic viewpoint, in the framework of generalized standard materials. An
exponential dependence of ductile fracture damage on stress triaxiality is demonstrated
and the occurrence of material instability, 62 <0, is shown by various examples. In
finite element applications to cracked specimens, stable crack growth takes place
naturally by localization of deformation without it being necessary to postulate a local
fracture criterion nor to release the nodes.

1. Introduction

The examination of a crack tip or the minimum section of a tensile
specimen points out that ductile fracture in metals involves considerable
damage, via the nucleation and growth of voids, which should be taken into
account in the mathematical modelling in order to predict the conditions at
fracture and also to characterize the stress-strain relations before the
ultimate stage of damage. A damage function may be used with usual
stress-strain relations to define the conditions at fracture, but this is only an
approximation, a reasonable one for fatigue and creep damage, but not for
ductile fracture. Usual theories of plasticity imply plastic incompressibility,
which is inconsistent with the dilatancy evident in ductile fracture mecha-
nisms,

For the construction of a new plasticity theory including ductile fracture
damage, which reduces to usual theories of plasticity if damage is negligea-
ble, two approaches may be taken: microscopic and macroscopic.

In the first approach, taken by Gurson (1977). the macroscopic constitu-
tive relations are constructed from microscopic components of material;
matrix. particles, voids, and their individual and interactive behavior. The
transition from nonhomogeneous microscopic to homogeneous macroscopic
material is the main difficulty here, requiring a number of simplifying
assumptions. Moreover the microscopic components are not well known.
McClintock (1968), Rice and Tracey (1969) have developed models of the
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320 G. Rousselier

growth of voids, that give an exponential dependence on stress triaxiality,
o, /0,, where o, =o0,, /3 is the hydrostatic tension and o, the yield stress.
The growth rate of a single spherical void in a rigid-plastic material is
approximated by Rice and Tracey as,

R 3o

RTZ =0.283¢F, exp( 3_?;1 ) (1)
where R, is the void radius and é;, the remote equivalent strain rate. But as
far as we know, there are no acknowledged models of void interaction and
coalescence, that apply to the last stages of the ductile fracture of metal.

The second approach, used here, is macroscopic. It requires no descrip-
tion of micromechanisms and will be considered applicable to the whole
process of damage, on condition that the predictions of the model are
consistent with the current understanding of ductile fracture. The theory is
motivated by the microscopic models but is not deduced from them.

We suppose that the thermodynamical state of the material, the harden-
ing and also damage, are characterized by internal variables in the frame-
work of generalized standard materials (GSM), i.e. existence of a quasi-
potential of dissipation and normality rule for the plastic strain rate and the
internal variables rates, as proposed by Nguyen (1973). The characterization
of damage by internal variables is a natural consequence of the choice of
GSM. The same hypothesis was formulated quite independently by
Kachanov (1958) and Rabotnov (1968) for creep damage and developed
recently by Lemaitre and Chaboche (1978), who establish creep, fatigue, and
creep-fatigue cumulation models.

Ductile rupture is generally preceded by large plastic deformations
Lautridou and Pineau (1978), by recrystallization technique, have measured
a strain of 100% at the tip of a blunted crack in A508 C1 3 steel. Hence
constitutive relations are established for finite deformations.

First an account of GSM is given for finite deformation. Then application
to ductile fracture damage is performed. Finally, the initiation and stable
growth of a crack in a bend specimen are analyzed by a finite element
model which takes into account some finite deformation effects.

2. Generalized standard materials (GSM) in finite deformation

Consider the configurations (0) of a macroscopic element of material at
time 0, in an unstressed state, and (a) at time ¢, under stress a. Introduce
(Mandel, 1973) an actual intermediate relaxed configuration (x), by suppos-
ing the element of material unloaded at time '. Let G be the gradient of the

"Wirtual unloading according to the elastic properties, in order to avoid plastic deformations
in the opposite direction of the deformation experienced during loading.
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total transformation (0)—(a), P the gradient of the plastic transformation
(0)—(k) and E the gradient of the elastic transformation (x)—(a). As
G=EP, the velocity gradient tensor grad 6=(DG/D1)G ! is,
. _DE_ ., _DP__,__
grad =D +w= Dr E~'4+E Dr P (2)
where the symmetric and antisymmetric parts are the deformation rate
tensor, %0, and spin tensor, w. The objective derivative D/Dr may be a
convected derivative, the Jaumann derivative, or the derivative introduced
by Mandel (1973) relative to the rotation of the director frame which
specifies the physical orientation of the macroelement.

Consider only isothermal quasistatic transformations. The thermodynamic
state of the macroelement is defined by A*=(E'E—1)/2, the Green defor-
mation tensor between (x) and (a), and a;, scalar or generally tensorial
variables that characterize damage and strain-hardening of the material;
including the orientation of the director frame (Mandel, 1973).

The local form of the second principle of thermodynamics is,

_Dy

D >0 @)

oD
d=1r

where @(4° @;) is the specific free energy. Equations (2) and (3) give,

= -18 g DP —i)_ a_m_i)_m_a_@ﬁ
o tr(E SED;P lr(aﬁu = 2% 20,
(4)

where p=1/det G and p, =1/det P are the densities in the configurations
(a) and (k) (p=1 in the configuration (0)) and 7 is the Kirchhoff stress
tensor relative to the configuration (x),

Z=F-LE" (5)
P pk

In the (virtual) reversible elastic transformation from (k) to (a), the
dissipated power & is zero, and DP/Dr=Dg, /Dt =0, so,

7 _ do
D, - JAE " (6]
The generalized forces,
o dp
Y= 2 pr-t e it
s {E ’5 } A= (7)

are the work conjugates of the plastic deformation rate, QF =
{(DP/Dr)P "'}, and the internal variables rates, Da, /Dz (Nguyen, 1973).
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The resulting inequality is,

O=tr(SD°) + A, 0. (8)
1

The constitutive relations of the material express the rates in terms of the
generalized forces. Normal dissipativity is assumed, i.e. (Moreau, 1970):
there exists a convex quasi-potential of dissipation ¥(Z, 4;) and the con-
jugated rates are given by the normality rule.

Considering nonviscous plastic materials only, we further assume that the
yield surface is defined by the single differentiable plastic potential, F(Z, A4,).
It implies? that
.‘:3_{, De; 8 (9)
0= Dz 0A,

3

QP =A

where A=0 if F=F=0, otherwise A=0; i.e., the rates are oriented in the
direction of the external normal to the yield surface.

These postulates characterize GSM. In the usual theories of plasticity,
only the first equation (9) applies’.

The configuration (k) may be chosen so that the elastic transformation is
a pure deformation, E=E". Since elastic strains in metals are small, they
may be neglected compared to unity. Then E=1+4°=1+¢° and p=p,;
o=, Z=¢/p. With these hypotheses we have,

D¢®
s MUY 17y 0 3
d=srtH (10)
and the constitutive relations become,

a_ ¢ o

—=2r =T 11
p a3’ 4 da, (1)

oF Da, oF

b P: e _‘: —
P Aa(o/p)' Dt a4,’ (12)

where A=0 if F(o/p, A,)=F(o/p, A,)=0, otherwise A=0.

3. Application to ductile fracture damage

The hardening of the metal is supposed to be isotropic, characterized by a
single scalar internal variable @, =a. This is a reasonable assumption as
chiefly monotically increasing loadings are considered in ductile fracture,

2As a general rule, multiple potentials may be considered (Nguyen, 1973). ¥(Z, 4,) is the
indicatory function of the convex bounded by the yield surface.

'In the general anisotropic case, a constitutive equation for the plastic spflin tensor «® has to
be added to Egs. (9) (Mandel, 1973). It defines the orientation of the director frame.
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with no noticeable reverse plastic deformation. However, the generalization
to anisotropic hardening may be made, in the same way as in the theories of
plasticity without damage.

The ductile fracture damage is also suppose to be isotropic, characterized
by the scalar a, =pf. This is a simplifying hypothesis, because an initially
spherical void usually grows into an ellipsoid, the characterization of which
requires a symmetric tensorial internal variable §,; = §;;. On the other hand,
the isotropy is derived from Rice and Tracey’s (1969) results of symmetric
void growth under large stress triaxiality, o, /0.

The following form of the specific free energy is considered:

B(e".a, B)= 3L +,(a) +9u(B). (13)

The first term is the elastic recoverable energy. @, +q, is the “locked” free
energy, related to dislocations, residual stresses, voids, etc. The split of the
free energy into three terms means that the elastic moduli tensor L does not
depend on hardening and damage. Only for very large plastic strains, due to
high hardening, which creates a texture in the metal, or high damage, the
elastic moduli may be altered. The isotropic part of this alteration is
certainly taken into account, according to the elastic constitutive relation
(11): o/p=0d¢/0¢°, that gives o=pLe". The density p is related to the
damage, so are the apparent elastic moduli, L, =pL. In fact, measurements
of the variation of density and Young's modulus are performed as an
indirect assessment of damage (Lemaitre and Chaboche, 1978); an isotropic
damage D has been first introduced in the constitutive relations by Kachanov
(1958) and Rabotnov (1968) with the notion of effective stress 0, =a /(1 — D),
that gives L, =(1—D)L. In the case of ductile fracture damage, and with
the present formulation®, it leads to the definition of damage =D=1—p.

Finally, the split of the terms ¢,(«) and ,(8) in the specific free energy
means that the texture created by hardening and the porosity resulting from
damage do not affect the characteristics of each other.

The Von Mises form of the plastic potential is,

2 o\ 4
F(—,A):[Jz(d)} + =, (14)

p p V3
where J,(T) is the second invariant of the deviatoric part of a second-order

tensor 7. The generalized force, 4= —dg,(a)/da, characterizes the harden-
ing curve of the metal.

“Lemaitre and Chaboche ( 1978) consider the volumic free energy pg instead of the specific
free energy @. The damage D only appears in the elastic term in the form,
pe=1(1-D)eLe +po(a,),

where D has to be independent of p.
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Damage is introduced with a third term, depending only on the first
invariant, o, of the stress tensor, according to theoretical and experimental
results on ductile fracture up to date (Rice and Tracey, 1969; Hancock and
Mackenzie, 1976; Auger and Francois, 1977),

_ 1/2
F(E,A,B)={J2(E)] +-4~+Bg(°—m]. (15)
P P 3 p
The generalized force B is the work conjugate of B. Let d* and s be the
deviatoric parts, DF and o, the spherically symmetric parts of P and o,
respectively. The constitutive relations (11) and (12) give,

o=pL¢, (16)
A=—g\(a), B=-(B). (17)
B o
dP=A;. PP = -—g’(—m), (18)
Z[Jz(u)]m mo3%p
A o
a=2,  p=rg(2) (19)
V3 p
The equivalent deformation rate is usually defined as,
1/2 12
B =[35(D")] = [3a54F] . (20)

Taking the second invariant of both sides of the first equation (18), it
follows that

V3
3P

d¥=—"g, (22)
Oq

where o,, =[3],(0)]'/? is the equivalent stress. In the absence of damage, the
hardening curve is o,, =@(a), where a= [ DF dt.

Equation (22) is the usual constitutive relation with the Von Mises yield
criterion, In addition, the second equations in (18) and (19) characterize the
volumetric plastic deformation rate and the development of damage.

It may be argued that damage coincides with incipient plastic deforma-
tion, as the same threshold F=0 (15) is considered for plasticity and
damage. It is a reasonable approximation when the stress triaxiality, ., /@y,
is large (Beremin, 1979). In any case damage indeed starts with the forma-
tion and piling up of dislocation loops at the matrix—particle interface, at
incipient plastic strains, and not only with the subsequent nucleation of
voids (Henry and Hortsmann, 1979). Besides, if the stress triaxiality is low,
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the plastic potential (15) will reduce to the usual form (14), as will be
demonstrated below.

With the hypotheses of isotropic hardening and damage, from an iso-
tropic unstressed initial configuration®, the orientation of the director frame,
which is then corotational with the macroelement, does not intervene any
longer in the constitutive relations (16)-(19) (Mandel, 1973), and the
Jaumann and Mandel derivatives are identical. As @ and B are scalars, it
seems that these derivatives, and the spin tensor w=wF, do not enter the
constitutive relations. Actually, the time derivative of the elastic relation
o =pLe® is required, and according to Eq. (10),

D/o
— | =)=L(—DF): 23
5 (5)=L@-a); (23)
The spin tensor appears in the derivative,

Dfeo d ( o) wo | Oow

— === )-—+—. 24
Dt(p) dr\p p p (24)
The function g(e_, /p) has not been explicitly defined as yet.

In ductile fracture, the damage parameter B is directly related to the
change of density of the metal; thus 8= f(p). Expressing UD;‘: and B=B'(p)p
in the mass conservation law ﬁ)+3pf‘D£ =09, according to (18) and (19), we
find,

glom/p) 1
g(0./p) pB'(p)B’
where B= —@5(B(p)) is a function of p only. Therefore, the two sides of

(25) are constant of dimension 1 /g, say C/o,, where g, is the yield stress.
The integration of the left-hand side gives,

(25)

g(%’-)ED exp(i—:':), (26)

where D is the constant of integration; C and D are supposed to be positive,
in order that damage increases with stress triaxiality and that §>0; damage
is irreversible, since A cannot be negative.

The general hypotheses—generalized standard materials—and plastic
potential depending only on the two first invariants of the stress tensor—
yield an exponential dependence of damage on stress triaxiality. This result
is similar to that obtained by McClintock (1968), Rice and Tracey (1969).

*The elastic moduli tensor is also isotropic, L =A*8, 8y T (8,8, +8,8,).

®The elastic deformations are small, so p=p, and div c=3 = 35‘P£, As for an exact
measure of damage, p, should be considered instead of p. i.e. the elastic volumetric deformation
is excluded.
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Still there is a difference, the consequence of which will be shown; the
density p appears in the exponential. This is due to the fact that, in the
change of configuration, o is a material 2—contravariant tensorial density.
In usual plasticity theories, p is assumed to be constant (unity), but for
ductile fracture damage this is not a good assumption.

The functions B(p) and ¢,(fB) are related by

CoB'(p) P5(B(p))=0;. (27)
One of these two functions, just as the constants C and D, must be chosen

to match the theoretical and experimental results for given materials and
micromechanisms. Simple choices are:

B=1-p=g,(B)= 2 In(1-4), (28)
B= 5 —1=9(B)=—2 In(1+), (29)
B=f~fo=9(B)=C In(1~f, = B). (30)

In the latter example (not really distinct from 8=1—p), f1is the void volume
fraction, including the particles, the volume fraction of which is f;. As the
metal of the matrix is supposed to be incompressible in the plastic deforma-
tion, according to (18) without damage ( g=0), the relation between f and p
is,

1=

An alternative choice for B(p) is suggested by the Rice and Tracey
formula (1) for the growth of a spherical void in case of high stress
triaxiality,

R, ) 30,
Sl i3 it g
R, ~ 02830, exp( 300 ) (32)
(with the present notations). This formula is only valid for incipient void
growth (R=R, and p=1) but it may be extended to the whole damage
process. As A=%F 3 and

q
f sk
- R -
(19) and (32) give, if C=3/2,
f 02833

F=F~ "D (34)
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1t thus follows that,

C=3/2, D=0.49, (35)

_ JU=k) 1-p
p=inZmgy =in[1+ 22, (0)
w:(8)=2ing =k =~ Lin(1~f, + exp B). (37)
B(B):—wé(ﬁ)zg%z:%j%- (38)

The yield criterion, F=0, Eq. (15), becomes,
%4 L Vo one
2 +0.5700fexp( Zp%) @j(a)=0. (39)

This can be compared with the Gurson approximation (1977) resulting from
his microscopic analysis, with the matrix material idealized as rigid—
perfectly-plastic,

30,

afq+2002fcosh( 20”“)—(l‘%f’*)cro2 =0. (40)
i}
If the stress triaxiality o, /0, is large, 2 cosh=exp. As the Gurson analysis is

similar to that of Rice and Tracey, the correspondence between (39) and
(40) is not unexpected’.

4. Infinitesimal strain approximation

Assume both elastic and plastic deformations are small. The constitutive
relations become,

o=L¢", (41)

épzh%, éﬁ,:)\'—%%B(B]exp(%), (42)

dZL, B=AD exp(ﬂ}. (43)
NE) . o

"The consideration of acf] instead of g, in the plastic potential would make it difficult to give
a physical meaning to the hardening variable «. With the present formulation. = f ‘3‘3:; dr. For
large o, /o, and incipient damage (small f and f exp), an approximate form of Eq. (40) is,
0.y +0.50,f exp(30, /20,) —0, =0, which is similar (39).
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Since DF is now the time derivative, é&f =def/d¢, of plastic strain tensor, £F,
with deviatoric and spherical symmetric parts denoted by ef and &&, =¢}, /3,
respectively.

The plastic potential is,

Flo, . 8)=0.,~¥i(«) + DB(R) exp| <22 |. (a4)
The plastic multiplier A is expressed in terms of the stress rate g,

A= % -g—id, (43)
where

fre L OB (46)

T4, da;0a; 0A4;

The elastic energy on the one hand, hardening («; =a) and damage
(@, =f) on the other hand, are supposed to be uncoupled in the free energy
(13), 9%p/da,d¢° =0. Thus,

. _df d9\_ 3% . ¥ ,F

= ds ( 9, ) = da,da; 9 aa].aaj}\ 04, (47)
In plastic loading, F= F=0, and hence,

oF . OF .

300 3,0 (48)

i

Equations (47) and (48) can then be combined to give (45). Equation (45)
yields,

déP=?\gd=H;\2. (49)

If the matrix Z‘-J-‘—“ach/aa,.aaj is positive, then >0 and the Drucker
inequality holds (Nguyen, 1973; Nguyen and Bui, 1974),

aef =0, (50)
the equality implying é¥ =0. In the present theory,
i (a) 0
Z= . 51
o % (B &Y

Assume the hardening of the matrix material is positive, then ¢{(a)>0.

If the damage is defined by 8=1/p—1, (29), then q);(,!?):o[,/C(l+,8_]2
is also positive. In that case, as stated by Rousselier (1979), instability (in
Drucker’s sense), and therefore rupture, is impossible. It is still necessary to
postulate a fracture criterion. In the next section it will be demonstrated
that instability takes place if the infinitesimal strain hypothesis is relaxed.
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The positiveness of Z is not a general rule. The choice of f=1—p, (28),
or B=f—fy, (30), yields ¢3(B)=—0,/C(1—B)* or ¢5(B)==0,/C(1—fy
—B)?%, both negative. Equation (36), suggested by the Rice and Tracey
formula (1), gives,

5 o, (1—f)fhexp B
q"! (B ) == -C'-O— u - 29
(1-fo+fexp B)

which is also negative. In infinitesimal strain numerical applications, the
damage B should be defined so as to avoid a positive ¢3(8) and allow
instability of the material.

(52)

5. Instability and fracture: example

Consider the homogeneous transformation without rotation of an element
of material subjected to a triaxial stress state,

0y, =043 =ko,,, k constant<1,
0,3 =053 =05, =0. (53)

The plastic potential and the constitutive relations for & and D =—p/3p
give,

1=k o,y _pila) o [C(HZH ﬂ]_
T 7 +DB(B) exp 3o, " =0, (54)
B e O]

According to Eq. (27), B(B)= —o0, /CpB’'(p), and the combination of the
two latter equations gives,

p 31—k) [B(p) p pila)

pé 142k L D3 E]+C Oy =0 B8
T Dvy3 (l+2k)C Oy | tp’l(t’.‘t) .

(1 k)_poo CoB(7) exp[ 3 s | o =0. (57)

Equation (56) is an algebraic equation for p/d. From an actual state
(o,,, p, @), its numerical solution, considering an increment Aa, yields the
new values a+Aa, p+(p/a)Aa. The new stress o, 1s given by the numerical
solution of the algebraic Eq. (57).

The strain rates are,

| P T P P — g4
df =-2d5=-245=9F =a,

df,=df=df=0. W =-4. (58)
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We shall consider the “logarithmic plastic deformation tensor”, & = [DF
d:, the first component of which is,
&F=a—1lnp. (59)
The results are shown in Figs. 1-8. In Fig. 1 a power-hardening law
@i(a)=0y(1+va) is considered. The damage is defined by 8=1/p—1, (29),
or by B=f—f,. (30). In both cases, after a certain amount of plastic
deformation depending on stress triaxiality, instability takes place: 6é° <0.
The damage-related softening overcomes the strain-hardening of the matrix
material.

S . Infinitesimal strain
#= p_ approximation
—— =it
4 ﬁ o *h -—___-____...--'
" '__________...----___....--
0.8 e B e i Wt nlonfonies fetet
o-’/‘r“’"""- B T e W
S == el il
: / '-4-—?-"' ‘.'""- hﬂ;"‘.
1 T~ T~
0.6 .
"'l..‘-‘“
/ \ =
911/
%
5 \
___..-----"'"'_—-———--
-.-'.'.-.-—.'.-_
k=0 ___..i""""‘-.-—.
-""""..
1 0
e s-s
;
I T——r—— 038
P
032 = 033 = kayy k
C=15 D = 0.005
0 , ! ;
0.1 0.2 0.3 04 é P 05

1
Fig. 1. Stress—strain and density curves with ductile fracture damage.
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Fig. 2. Stress—strain and density curves with ductile fracture damage.

If the infinitesimal strain constitutive relations, (41)-(44), are used instead
of the finite strain ones, instability is not revealed if 8=1/p—1, even with a
very high stress triaxiality (A=0.8). It was demonstrated in Section 4 that
instability was impossible indeed in that case. If B=f—/,, instability is still
possible but is dramatically postponed (Fig. 1).

In Figs. 2 to 5 damage defined by B=0,f/C ((35) to (38)) is considered,
as suggested by the Rice and Tracey formula, with the power-hardening law
of Fig. 1. The effects of various stress triaxialities and various initial void
volume fractions f, are investigated. As expected, the smaller the volume
fraction f, the higher the stress triaxiality and plastic deformation required
to yield instability. This is emphasized in Fig. 6, where the plastic strain at
instability is plotted versus o, /0., =(1-+2k)/3(1—k) (that has to be
distinguished from o, /0,). The dependence on f; is slightly stronger than
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1
Fig. 3. Stress—strain and density curves with ductile fracture damage.

the squaring of the initial void fraction required to double the critical strain
obtained by McClintock (1968).

With B=o,f/C, the infinitesimal strain curves, shown in Fig. 5, do not
differ from the finite strain ones until instability. But the final decohesion
resulting from these curves is entirely different as shown in Fig. 7 with a
reduced strain scale (in Fig. 7, the power-hardening law is changed for an
exponential one: ¢|(a)=0y[2—exp(—20a)]).

The finite strain curves of Fig. 7 clearly show that the present theory, with
damage depending exponentially on o, /p, is perfectly fitted to the modell-
ing of instability and decohesion in ductile fracture. This is not the case with
an exponential dependence on o, alone.

Finally, it should be noticed that the use of fracture criteria, here B=§_ or
p=p. or f=f. is not consistent with the results of the present analysis. The
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Fig. 4. Stress—strain and density curves with ductile fracture damage.

critical values of 8, p or f, corresponding to material instability, depend on
the mean stress o_,; see Fig. 8. This is in agreement with the experimental
results of Beremin (1979) where a decrease of the critical void growth at
instability with increasing stress triaxiality is obtained.

6. Finite element analysis of a cracked specimen

The analysis of ductile fracture and stable crack growth in a three-point
bend specimen has been performed with a 2D infinitesimal strain finite
element model (plane strain). As pointed out in Sections 4 and 5, the
infinitesimal strain approximation is a serious limitation of the present
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Fig. 5. Stress—strain curves with ductile fracture damage.

theory. That is why Eq. (41)-(44) are modified in order to include some finite
deformation effect: namely, the ratio o, /p is substituted for g, into all the
exponentials, according to the finite deformation relation (26), and Oeq /P
for o, into the plastic potential (44).

A constant stiffness method is used. It requires the iterative computation
of the “initial stress’ S=LAe" that appears in the linear elastic relation
between the increments of stress and strain; Ao=LAe—S, which is the
approximate form of Eq. (23). The initial stress, S, is computed with an
implicit algorithm (Nguyen, 1973); see Appendix. This algorithm eliminates
the systematic numerical errors usually found in the explicit method and is
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particularly suited to the present analysis where material instability 6é% <0
takes place.

The geometry of the specimen is specified in Fig. 9. The increments of the
displacement u, =d of node A are prescribed; the corresponding load is
F,=P/2B. The specimen is discretized into 377 constant strain triangular
elements, 420 nodes and 840 degrees of liberty. The size of the finite
elements at the crack tip is shown in Fig. 10.

Note that at the tip of a crack, where steep gradients of stresses and
especially strains take place, the critical conditions for instability shall be
achieved over some characteristic length /, related to interparticle spacing.
Otherwise void coalescence and material decohesion will not occur. In the
numerical modelling, with constant strain elements, /_ is the length of the
finite elements at the crack tip. If the specimen size Of geometry are
changed, the elements at the crack tip will keep the same absolute size.
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damage. Stress curves in two crack tip elements showing the local instability (crack tip
geometry different from that of load curves).

Moreover, in order to model stable crack growth, the length of the elements
on the crack prolongation are uniform.

The same exponential strain-hardening law as in Fig. 7 is considered;
pi(a)=0,[2 —exp(—20a)] where o, =500 MPa. The elastic constants are
E=200 GPa and »=0.3. According to the discussion in Sections 4 and 5,
the definition of damage (35)-(38) is used. So, the ductile fracture properties
of the metal are defined by two parameters: (1) [, related to the interparticle
spacing; and (2) f;, related to the particle volume fraction. These are required
for the characterization of the particle size distribution®.

The deformation of the crack tip zone is shown in Fig. 10. In the two most
deformed elements, undergoing stress triaxialities o, /0, of nearly 3. the
damage increases rapidly. At some point, corresponding to the maximum of

¥Note that in a tensile specimen, with no strain gradients, the ductility is dependent on the
volume fraction f, only, as observed by Edelson and Baldwin (1962).
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the local stress—strain curves, as in Fig. 7, the deformation of these elements
increases abruptly, and the stresses decrease according to curves I and II of
Fig. 11. This quasi-rupture of the two elements may be identified with the
coalescence stage of the ductile fracture process. The node w (Fig. 10) is no
longer bound to node C (initial crack tip) nor to the symmetric node «’. So
stable crack growth occurs naturally, by localization of deformation, resulting
from the constitutive relations only, without it being necessary to define a
critical state nor to release the nodes as in usual models. A further stage of
stable crack growth (four nodes, d=0.748 mm) is shown in Fig. 10; the
strains in the most deformed elements exceed unity.

As constant strain elements are used, the localization of deformation
takes place over the whole element. That is why very thin elements are
needed along the crack -path. This drawback should be avoided with
nonlinear elements that would give a better localization of deformation and
allow crack propagation in any direction. Note that the blunting of the
initial crack tip, that may be of importance for the initiation of crack
growth, is not modelled by the simple constant strain elements of Fig. 10.

The load-displacement curves are given in Fig. 11 for various initial void
volume fractions f,=1072 1073, 107* and 0 (no damage). In spite of
strain hardening, up to 2g, at the most, the load rapidly stops increasing
when ductile fracture and stable crack growth take place. After the maxi-
mum load the ductile tearing of the specimen goes on under decreasing
load, in agreement with the acknowledged experimental evidence.

7. Conclusions

Constitutive relations have been developed for finite transformation of
plastic dilatant materials. The dilatancy 1s related to the growth of voids
nucleated at particles present in the matrix material. These constitutive
relations model the ductile fracture of metals. They have been derived, in a
macroscopic approach, from the internal variables hypothesis within the
framework of generalized standard materials.

An exponential dependence of ductile fracture damage on stress triaxial-
ity is demonstrated, and the occurrence of material instability 6é° <0 shown
for various examples. The finite transformation effects are also discussed.

Finite element analyses of a cracked specimen have been performed.
Stable crack growth occurs naturally by localization of deformation, aad is
in better agreement with the physical behavior of metals, and the method is
simpler, and probably cheaper than usual node relaxation models. An
advantage of the present approach 1s that nonsymmetrical complex loading
conditions (the angled crack extension) and 3D-problems could be handled,
without special finite element modelling in the crack tip zone.

whi

ch
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In further applications nonlinear elements must be considered, as con-
stant strain triangular elements are not suitable for localization of deforma-
tion. The necessity of modelling the initial crack tip blunting and of a
complete finite transformation formulation, according to the equations of
Section 3, should also be investigated.

As for the parameters involved in the theory, C and D are derived from
microscopic models, and could be checked by experiments. The testing and
computing of circumferentially notched tensile specimens give f,, which
should be consistent with the observed inclusions and/or precipitates
volume fractions, according to the micromechanisms involved. The char-
acteristic length /, that intervenes in crack problems, though relevant to
microstructural aspects (a few interparticle spacings), must be regarded as
essentially an empirically obtained quantity. Its determination requires
experiments on appropriate specimen geometries, which can be modelled
with 2D-finite element analyses, like side grooved CT specimens or cir-
cumferentially cracked tensile specimens. Such an experimental program, in
collaboration with the French research group Beremin, is in progress on
A508 C1 3 steel.

Appendix. Implicit algorithm for the constitutive relations with ductile
rupture damage

In the numerical solution of the elastic-plastic problem, for the increment
t—t+Ar, the initial stress S=LAe® has to be expressed as a function of
a(2). a;(1), and Ae. The following form of the constitutive relations is used:

As=2u(Ae—Ae?), (A.1)
Ao, =(3A*+2p)(Ae, —Ad), (A.2)
‘AEPZA_L-'.—AS—‘ (AS)

2yJ,(s+4s)
DC C
P == / .28
Aef, ?\300 B(B+.\,8)exp( poo(am+éam)), (A4)
&aZL, (A.5)
V3
C
AB=AD exp(-—(omi—;&om)), (A.6)
\ BT,
s+As

| )+\/§Ds(ﬁ+amexp(p—2(am+30m))

p
—@i(a+Aa)=0. (A7)
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These relations are written at time ¢+Ar instead of ¢ in the explicit
algorithm, and the plastic potential F=0, (A.7), is used instead of Eq. (45).
If As and Ao, are eliminated between (A.1) and (A.3), (A.2), and (A.4)
respectively,

DC
oV3
| Xexp{-p—i;[am+(3k*+2u )(Ae, —Ael, )]} (A.8)

s+As

Va(s+As) ,

Aef =Aa

B(B+AB)

s+As=s5s+2p(Ae—Ae”)=s5+2plde—pAay3

then,

14 —pda3

(s+As)=s+2pdle. (A.9)
J(s+As)

Taking the second invariant of this equation, we obtain,

[L(s+As) +pm{3“:—‘/’g_—, (A.10)

where
72=-§—(s+2,uﬁe)(s+2,uﬁe). (A.11)

Equation (A.9) gives,
y(s+As)

V3J(s+38s)

=s+2pule.

Finally,

AeP= 32“—:(5+2pAe). (A.12)

Equations (A.7) and (A.10) give,
¥—3pda
P

egp{p—c%[am+(3A*+2p)(aem—as;)]} =. (A.13)

—@,(a+Aa)+V3 DB(B+AB)

The exponential is eliminated between (A.8) and (A.13),

CA =
Ae:=3_a(¢’;(a+ﬁ“)+M)s (A.14)
% P
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and (A.6) is written as

AB=DAay/3 exp{;% [am +(3A*+2u)(Aey —Aeﬁl)]} . (A.15)

The substitution of (A.14) for Al into (A.13) and (A.15) and of (A.15)
for AB into (A.13) vyields a simple algebraic equation for Aa alone. The
numerical solution of this equation gives Ae as a function of 0, a, § and Ae.
The initial stress S=LAe® =(3A*+2p)AeE, +2plef is then given by (A.12)
and (A.14).

Note: With the infinitesimal strain hypothesis, p=1. In the above equa-
tions the density p is given by (A.15) and 8+ AB=PB(p) (see Section 3).
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