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FINITE DEFORMATION CONSTITL"TIVE Rf,LATIONS
INCLUDING DUCTILE FRACTURE DAMAGE

C. ROUSSELIER

Electncilè de Fr@.e, Mùettur-bitL Frun.e

CoNûulivc ..lalions ùc d€reloped lor fidte deiormatio. oI plastically dilaht
$alenah Tleæ r€iations, vhich nodel rbe ducdle fr&lure of ûe1ôls. re denved lron
lhe ûadosepi. vietr?ôinr. in thc l.mewôrk ol gcn talted slûdùd maleriâls. An
èxpon€.ri.l depe ece of dùcrile lraclure dmage on slres lridjality is denonsttued
dd the @uûene of matenal insrablhy, dé'<0, is slrom by rdiou qmptes In
Iinile elemcnt applicarions to crælcd sp€cibcls. stable cræk grc\'lh tal€s place
tuluially by l@alÈador oi defomâtior snhoû n being n æ$ary to pos!ùlaie a l@.1
f.æ1uc ûiterion no.lo r€lease rhe nodes.

l. Int|oducaion

The examinàtion of â crack tip or the minimum section of a lensile
specimer poinls out that ductile tuacture in metâls involves coDsiderâble
damage. via the nucleation ând Srowth of voids, which should be taked into
âccounr in rhe mathemâlicâl modelling in order to predict the conditions at
fracture and also 10 châracterize lhe stress-strâin relations before the
ultimaie slage of damâge. A damage function may be used with usuâl
strcss-strain relations to define ihe coûditions âa tracturc, bu1 this is only an
approxination, â reâsorablÈ ore for fâdgue and creep damâge, bu! not for
ductile frâctur€. Usuâl theori€s of plâsticily impiy plastic incompressibiiity,
which is inconsistent wjth th€ dilalancy evident in ductile fracture mecha-

For the cons.ruction of â new plâsticily ùeory including ductile tuaclure
damâge. which r€duc€s ro usual theories of piâsticity if damage is negligeô-
ble, two âpproaches mây be taker: microscopic Ànd macroscopic.

h the firsl Âpproach, taken by Gurson (1977), the macroscopic constitu-
tive r€lalions are consùucted from microscopic componenls ot maleriâl:
mÀtrix. Daflicles. voids. and their individuâl ând interaclive behavior. The
transition from nonhomogeneous microscopic to homogen€ous mâcroscopic
materiâl is lhe main diflicully here, requiring â number of simplifying
assumptions. Nlor€ov€! the microscopic components âre no1 wetl known.
Mcclintock (1968). Rice and Tracey (1969) have developed models of the
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growth of voids, thâl giv€ an exponenlial dependence on stress tria{ality.
a^/do, \there 6^=okk/3 is the hydrostatic tension and dô lhe yield stress.
The gowth rale of a single sphericâl void in a rigid-plastic malerial is
approximaÈd by Rice ând Tracey as,

^o =ô ,RuF ",^ l  
r% I

Âô - -*aq -  r \  2oo /
(r)

where À0 is the void radius and é:o tbe remote eqùivâlent stmin râte. But âs
far as rv€ know, lhere are no acknowledged models of void iûterâcdon Ând
coalescence, thât apply to lhe last stages of the duciil€ Èaclure of melal.

The second approach. used here, is mâcroscopic. It requires no descrip-
lion of microm€chânisms ând will be considered applicâbte to the whole
process of dâmage, on condirion that the predictions of th€ model ar€
consislent with rhe curreni underslânding of ductile fracture. The theory is
motivated by the microscopic mod€ls but is not deduced from ùem.

We suppose that rhe th€rmodyramical s!âre of the materiâI, the hard€n-
ing ând also damag€, âre châracterized by intemal variables in the frame-
work of generalized slandârd mat€riâls (GSM). i.e. existence of â quasi-
porenrial of dissipation and normâlily rule for the plastic slrain râle ard th€
inlenal vâriables rates, as proposed by Nguyen (1973). The characterizâtion
of dâmage by internâl variables is a nâturâl consequenc€ of the choice of
GSM. The same hypolhesis was formulaled quite independently by
Kachânov (1958) and Râbohov (1968) for creep dârnâge and developed
recently by Lemailre and Châboche (1978), who esmblish creep, fatigue, aûd
creep-faligue cumulâlion models-

Ductile rupture is generâlly preceded by large plastic delormâtions
Lautridou and Pineau (1978), by .ecryslallization technique, hâve measured
a slrain of 100% âl the tip of a blunl€d crùck in A508 Ct 3 steei. Hence
constirurive r€lations Âre est^blished lor Jinile .le!ûrnations.

First ân ùccoun! of GSM is giv€n for finile deforrnation. Then âpplication
io duciile fraclure damag€ is p€rformed. Finally, the inilialion and slable
growth of â crack in a bend specimen are analyz€d by a finite element
model which !Âkes into asrounl some finite d€formâtion effects.

2. G€rcrâlized stândard m:rteriâls (GSùO in finite d€fomation

Consider the configurations (o) of â mâcroscopic elemenr of mâlerial at
lime 0. in an unstressed srâÈ. and (tr) rt time r. under stress o. Inroduce
(Mandel. 1973) an àctùâl int€rmediâle r€lâxed configuralion (r), by suppos-
ing the el€ment of materiâl unloaded a! time r'. Lel G be the gradienl of the

rdkludoadirg according to thc clddc propedies. in ôrdêr to avoid plastic deioûalions
h tbe opposrle dnec6n oI rbe defornatior erpenenc.d du.ing loâding.



wh€re the s)mmetric and antisymmetric parts are th€ deformation râte
lensor, Q, ard spil lensor, o. The obj€clive derivative D/Dr may be a
convect€d de.ivativ€, rhe Jaumann derivalive, or the derivative iniroduced
by Mândel (1973) relative to the rotâtion of the director frame which
specifies the physical o.ientâtion of the macroelement.

Considff only isothermal quasistâtic transformations. The thermodynamic
sia.e of the macroelemenl is defined by 

^'=(ÀrE 
l)/2, the Greer defor-

malion tensor beiween (,.) and (a), and d,, scalar or generâlly rensorial
variables that charactenze dârnâge and sarain-hardening of the material;
including the orientation of the dir€ctor frame (Mandel, 1973).

The local form of the second principle of therrnodynamics is,

o rr l  ' : ' l -  :e >o (r)
\p l  Dt

where q(À', d,) is the specific free €nergy. Equations (2) and (3) gjv€.

o_oi r - 'erPp , l  , . i9q a\ë geg-0.
'  ' l -  p-Dr '  t  \ôA'  r . /  D, ôa, Dr - '

(4)

where p= l/d€1 G and p, = l/der P âre the densnies in the configurâtions
(a) ând (x) (p=I in the co iguralion (o)) and 

'r 
is rhe Kircbloff stress

tensor relative to the configuration (/r).

(5)
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rotâl transformltion (o)e(â), P the grâdient of ihe plastic lransformation
(o)+(x) ând -E the gradient of ùe elâstic trânsformation (r)j(a). As
O=tP, the velociiy gradienr rensor grâd D-=(DG/Dt)G-' is,

(2)

In the (virtual) reversibl€ elastic transformation from (tr) to (a), th€
dissipated power O is zero, and DP/D'=DdilDr=0, so,

The generalized f orces,

(6)L=99

:=(r,sr,  ' ) ,  , , ,= # (7)

are the work conlu-sates of th€ plaslic d€formÂtion rate. rùP =

{(DP/Di)P -r}. and the irlernal variâbles rates. Dll,/D, (Nguyen. l97l).
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and the constilutive r€latioûs become,
aA@ôs
p d€'

^"  ôF Dd, .  AF
"  'aG/ù Dt AA, '

where À > 0 ir r(d/p, .ar) =F(d/p, ,4,)=0, orherwise À=0.

The resulting inequality is,

-Dao = u{:OP) +,{ , -  >0 (8)

The consritutive relâtions of ihe material express the rates iD ielms of the
generalized for€€s. Normal dissipâtivily is assumed, i.e. (Moreau, 1970):
there exists a convex quÂsi-potential of dissipation l[(:,lr) ând the con-
jugâred rates are giveû by the normality rule.

Considering nonviscous plasaic mâterials only, we fu.lh€r assùme that the
yield surface is defined by the single differentiable plâs1ic potenlial, F(:, lr ).
li implies2 rhat

oF=À$. P=r9f . (a)-  ô> Dr -AÀ, '

where À>0 if I.=I'=o. orherwise À=0: i_e., rhe rates are orierted in làe
direction of ùe externâl normal to the ield surface.

These postulales characterize CSM. ln the usual theories of plâslicity.
only the first equation (9) âppliesl.

The configuration (() rnay be chosen so that the elâstic transformation is
a pure deformalion, t=Er. Since €lastic s[âins i1l metals are small, they
may be neglect€d compâfed 1o unily. Th€n t= I +N = I *e' and p=p";
d=', >=d/p. With these hypoiheses we have,

(10)

( l  l )

(12)

3. Applicrtion to ductil€ frâcture damag€

The hardening of the metâl is supposed to be isrtropic, characterized by a
single scâlar intemal vâriable dr =d. This is a reâsonâble âssumPlion as
chiefly monotically increasing loadings âre coNidered in ductile frâcture,

:As â general nne. nulliple poletlirls 6ay be consid{ed (Neuycn, 1973) V(:,.'1,) i5 lhe
indicrtô.v iùnclion oI the @nvex boùnd€d by the yield surlæe

I I. rhe se.eral diefoprc c6e, . constnldve eqùaiior lor ùe pldtic sptn le6o! dP hs lo
b€ added b Eqs. (9) lMhdel, l9?3). It d€Iines the onentâlion ol lhe director f.@e.
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with no notic€âble reverse plastic deformation. How;Àr, the generalization
to anisoiropic hardening may be mâdq in the same way as in the theories of
plaslicity without damage.

The ductile frâcture damâge is Àlso suppose to be isotropic, characterized
by the scalar d: =8. This is a simpiifying h)"othesis, becauie an initiâlly
spherical void usuâlly grows into an ellipsoid, the chârâcierizâlion of which
requires a symmetric tensoriâl inlemâl vâriâble Élj =Bri On the other hand,
the isotropy is derived ftom Rice and Tracey's (1969) results of symmetric
void growth under large slr€ss triaxiâlily, dnldo.

The following form of the specific free energy is consid€red:

e(e", d, É)= +s.L€. +e,(")+çJÊ). (r3)

The filst term is the elastic recoverable energy. 9r +92 is the "locked" frc€
eDergy, relâted 10 dislocations, residual stress€s, voids, etc. The splil of the
free energy inlo three t€rms means that the elastic moduli tensor I does not
depend on hardening aûd damage- Only for very lârge plastic strains, du€ to
high ha{dening, which creâles a texture in rhe metal. or high damâge. the
elastic moduli may be altered. The isotropic part ol this alteûdon is
certainly taken into account, according to the elastic conslitutive relation
(llrt o/p=Aq/Ae', that giv€s o=pl€'. The density p is related to ùe
damage, so ar€ the appar€nt elastic moduli, ,. =pa. In fac1, measurcments
of the vâriation of density and Young's modulus ar€ p€rformed as an
indirect assessment of damâg€ (Lemaitre ând Chaboche, I 978); an isotropic
damag€ , has b€en first n troduced in the constilutiv€ relalions by Kachânov
(1958) and Rabotrov (1968) with the notion of ellective sress d. =d/(l -D),
ùat gives ,. =(1-D)1. In the case ol ductile fracture damage, and wilh
the presenl formulationa, it leads to the definition of dâmage B=r= 1-p.

Finally, rhe splir of the terns q,(a) and elB) in rhe specific free energy
means ûat the lexture created by hardening and the porosiry resulling tuom
damage do not affec! the characteristics of each other.

Th€ Von Mis€s form of the plastic poæntiâl is,

(14)4î 4=ln(i\1"'.t.
where,/r(7) is the second invariânt of the deviaroric part of â second-order
tensor I' The generalized force,l= -dqr(a)rida, châracrcrizes the harden-
ing curve of the metal.

"Lenait.e ùd Châbche (1978) co6ide. the ù,&n,. fræ energy pp instead oI lhe specilic
L€e eneiSy 9 'fte dafu8e D only apleds iû tbe elatic t€m in tie lom,

pe= :( l  -D)s"aJ+per(d,) ,

wh€re D has to be iùdependert of p.
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A= -e'la). B= +i(p),
,rP =r -----L oP=r9" 15\

zlt'r"tl"' ' 
' ' 3" \ P /'

The equivalent delormation rate is usually defined as,

.F, 
" 
= It r"("ù' \l' /' = li,t 1,t :À' /' .

Taking the second invariânt of both sides of the first
lollows thai

Damâge is introduced with a third term, depending only on t}le first
invariant, o-, of the stress tensor, according ro theoretical atd experimentÂl
results on ductile fracture up to dâte (Ric€ ând Tracey, 1969; Hancock and
Mackenzie. 1976; Auger and François, l9?7),

ai ,  ,)=[+{i)] '"  ,# * l ' ;) (15)

The generâtized forc€ B is the work conjugate of p. Let dP ând s b€ the
deviatoric parts,6tj and oh the spherically symmetric parts of OP and o,
respectively. The conslitutive relations (ll) and (12) give,

,=à, p=^"(i)

À =,
/ ' - '

(  t6)
(17)

(18)

(1e)

(20)

equation (18), it

(21)

\22)

where o." =[3Jdo)]'/'? is the equivâlenl stress. In the absence of damage, the
hardening curvl is o.o =çi(a), where a=/ Ol dt.

Equation (22) is the usuÂl constitutive relation with the Von Mises yi€ld
criterion. In addition, the second equations in (18) ând (19) characterize ùe
volumelric plâstic deformâtion rale and th€ developmenl of damage.

It mây be argued that dâmÂge coincid€s with incipienl plâslic deforma-
tion, as the sâme ttueshold F=0 (15) is considered for plâsiicity and
damage. It is a reasonâble approximation when lh€ stress triajdality. d-/do,
is large (Beremin. l9?9). In any case damage iûdeed srarts with th€ forma-
tion and piling up of dislocâlion loops at the matrix-pârticle inlerface, a!
incipienr plastic strains, and not only wiih the subseqùent nucleation of
voids (Henry and Horlsmânn, 1979). Besides, if the slress tnaxialily is low,
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the plâstic potential (15) will reduce to the usual fo.rn (14), as wili be
demonstated below.

With the hpotheses of isotropic hardening ând dâmage, lrom an iso-
tropic unsaressed initiâl configuralion5, the orientâtioû of the director frame,
which is then corotÂtionâl with lhe macroelement, does noi intervene any
longer in the constitutive relâtions (16È(19) (Mândel. 1973), and the
Jaumânn and Mândel derivÂtives Àre idenlicâI. As d and p are scalars, it
seems Lhâr lheJe deri\alile(.3nd !h€ spin tensor d=dP. do nol enler rhe
constilurive reladons. Actuâlly, the time derivative of the elastic relâtion
r=pa€e is required, and according to Êq. (10),

325

gls)=rro.r*)
Dt\pl

The spin tensor appears in the derivâtive,

D/d\ d/d\  dd dd

Dr\p/  d/ \p/  p p

\23)

(:24)

(25.)

The function g(d- /p) has not been explicitly defired as yet.
In duclile fracture, the damage parameter B is directly relâted 10 the

chânge of d€nsily of the metal; thus B=B(p). Expressing 6D: and 19=B'(p)ê
in the mass conservaiion law È+3p;*=06, according to (18) and (19), we
find.

c ' \o-/p) ,  I

7Ç7ù--aEGE'
wlere ,= -çi(Ê(p)) is â function of p only. Therefore, the lwo sides of
(25) are constânt of dimension l/d, say C/do, where oo is the yield slress.
The inlegration of th€ left-hand side gjves,

,(i)=,*'(*). 126)

where D is the consaânt of htegration; C ând, are suppos€d 1o be positive,
in order thdr dâmage increares sirh . t r€ss tnù\ ic l i ly and rhâr B - 0:  damage
is ineversible, sinc€ À cannot be negâdve.

The general hypolheses generalized slandârd materials-ând plastic
potentiâl depeûding only on rhe 1wo first invariants of th€ stress tensor-
yield ân exponendal dependence of dâmage or slress triaxialiry. This result
is similar to thâr obtaired by Mcclintock (1968), Rice and Tracey (1969).

sTbe eldlic noduli te.sr is.lso isôr.ôpic.2,,,r =Ài4,ô,r+,r(ô,iô,tr+ô,rô,,1.
6Tbe elddc delonarioN ù€ snalt. s p:p, ûd dii t=3.1i-:3:nj. Às ior d exacl

medure of dmage. p, should be côoideftd inst.d ol p. i e thc elâstic lolmclric dcforn.tion
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One of ùese two fuûctions, just as the constants C and ,, must be chosen
10 mâach the theoretical and experimental results for given materials and
microme{hanisms. Simple choices are:

B= I -p+e,(B)= ? h(r -B),

n= j- r-e,1n;= -f r"1r+B1,

B= t- t"-e,$) = 2 h0 - t" - p).

Still there is â differenc€, the consequence of which wil be shown; ùe
densiry p appeârs in the exponential. This is du€ to the fâct that, in the
chang€ of configuration, o is a materiâl 2-conlravanânt tensorial density.
In usual plâsticity theories, p is arsumed io be constant (unity), but for
ductile frÂctùre damâge this is not a good assumption.

The funclions p(p) ând 9lB) aJe related by
cp9'G) e:'G( p)):oo. (27)

(28)

(2e)

(30)

In the latler example (not reâlly distinct from P= I -p),/is th€ void volume
frâction, including the particles, the volume fraction of which is Â. As the
metal of the malrix is supposed to be incompressible in the plâstic d€forma-
iion, according to (18) wiùout damage (g=0), the relâtion betw€en/and p

(3r)

ând Tracey
high stress

132)

(with the present notations). This formulâ is only valid for incipient void
growth (R=Ro and p=l) but it may be extended to ahe *hole damag€
process. As À=6D.P"y'1 and

l- f

An altemative choice lor p(p) is suggested by the Ric€
formula (t) for the growth of a sphe.ical void in case of
rriâxiâlity,

& =n 
'o,oi'" --i15IRo - -"-  1q "Y\ 2oo / '

f  ^R
t ( t - t  )  -  R'

(19) and (32) sive, ir C=3/2.

iGlr{-
0.283\5

(33)

(r4)
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It thus fouows that,
C=3/2, D=o.49,

n _,"  4,1- lg l  _r1, , ' - ,0\ .
'  lo\ t - l  )  \  Pto I

.^ .  o. .  l - l
e,{B) = 

ë rn È; 
= - Ë rn( r-lo -/o exp É).

atBt- -" . , tBt=4 -+ ,  k*P Bc I -/o +/o exP B 
'

The yield eriterion, F=0, Eq. (15), becomes,

93 r 0.57o^/.*D{ l9* I. r ir ot=0.
P " '  \zPdol  '

327

(:31)

(38)

(35)

(36)

(41)

(42\

(3e)

This call b€ compared \vith the curson approximation (1977) r€sulting ftom
his microscopic ânÂlysis, with ihe matrix material idealized as rigid-
perf€€tly-plastic,

oi .zo"ycost{  . i  l - ( l - l ) )dJ=0. (40)
\zdol

If rhe stress triaxiality o- /o0 is large, 2 cosh = exp. As the Gursor analysis is
similar to lhat of Rice and Trac€y, the correspondence between (39) ând
(40) is not unexpe€ted7.

4. Inlinit€simalstr|inÂpproximâtion

Assume both elâstic and plâstic deformations are sma[. The constirulive

À

,/3

,s=^ffao*'(f,),
r=r" *"(!s i.

'The conside€doû oi oi irsteâd oi rq in 1he pl4tic potenrial vould nate n dimcdl to give
a physical nedlns ro th€ hardedl8 vaiàble d. wilh the pre*nt tomulalior. o = / .i: d r. For
Lrge d- d0 bd rnop'.nr omJSc L.mcl | / ùd / e\p). ! cppro! ma re lôrm of Eq (a0, ir,
dq + o.srùl erp{ld. /2 rû) - ro = 0, which is sinllù (39}.

(43)
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Sirce QP is now the time dedvative, éP=d€7dt, of plastic strain tensor, âP,
with devialoric and spherical symmelric pals denoted by eP and €P- = EL/3,
resp€ctively.

The plastic potential is,

r,(o, c, p1=o." -ri1.;*DB(É) *e(+ )
The plastic mulliplier À is exprcss€d in terms of the stress rate ii,

r  Âr
À=7 a,  d '

. ,  aF A2e dF
^ = dA a;tr;, u-,

(44)

(45)

(46)

The €lastic energy on tï€ one hand, hârdening (dr=d) and damage
(az =B) on the other hând, are supposed to be uncoupled in th€ ftee energ/
(13), ô'zelôa,â€' =0. Thus,

,  d/  ôo\
' ' '  dt  \  âc,  /

In plaslic loading, F=f=o,
dF aF. -
-d+ -4.=u.dd IJA,

o'@ d'o . d-l'

ddtdùt ddtdût dA)

and hmcq

(48)

combined to give (45). Equation (45)

(4e)

(50)

(5r)

\41)

If the matrix z,j=a2p/AsiAaj is positiv€, th€n fl>o and the Drucker
inequâlity holds (Nguyen, t973; Nguyen and Bui, 1974),

Equalions (47) and (48) can then be
yields,

. tdP=À:d=HÀ'] .

, t iP >0,

the equatity irnplying aP = 0. In the pres€nt theory,

-  [ç i  tot  0 ]
'= [  o c i  {Êr]

Assume the hrrdening of the mâ.rix mâterial is positive, then 9i(a)>0.
If the damage is defined by É= l/p- l. (29), then pi(B)=6r /C(t + P)t

is also positive. In lhal cas€, as slated by Rouss€lier (1979), inslâbility (in
Drucker's sense), and ther€fore ruprure. is impossible. It is still necessary to
postulate â frâcture criterion. In the ûext seclion ir will b€ demonstral€d
that inslability tâk€s plâc€ if ihe infinitesimal strain hyporhesis is felaxed.
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The positiveness of Z is not a generâl rule. The choice of p= I -p, (28),
ot B=l- lo,  (30),  y ields ei(B)=-do /c(r- l i )z ot eïG)=-oo/c( l - lo

B)'z, boih negârive. E4uation (36), suggested by the Rice Ànd Tracey
formula (1), gives,

( I -Â )rexp P
ei(B)= C

(52)

(58)

which is also negâtive. In infinitesimâl strâin numerical applications, the
damage B should be defined so as to avoid a positiv€ pi(É) and allow
instability of the material.

(s6)

5. Instâbility and fr|cture: exâmple

Consider the homogeneous lûnsformâdor without roaatior of an elem€nt
of material subjected to a tria.dal shess stâte,

oy2= o1r- kou. * constan!< l .
or2 =d2r =drr =0. (53)

The plastic potential Ând the constitùtive r€lations for .i ând O: = i'/3p
crv€,

'  : t  t -2k )  
" , , I!-{ 9r -t{l - DBtB r .*ol ' . -r=rJ. {r4r

\/i p 
"5 

t roo pl

. DC\E ̂ .  ̂  | c(r -2r ) .,, I
b= à-oBtBtetDl-r l -0.  {55 )

do L ro0 pl

According 10 Eq. (21\, B(R\= -oD/CpB'(p). and the combiration of the
two latter equations gives,

i ,  _ 3( l -k) , . [8 ' tp i  I  ] - ! .ç i t " t  _n
pa t+zk - loOrl  - . "

\1* lo+loexP pf '

D,B [( l -2r)c d, ,  I  q i (")  ^  . -_
l l  f r ) -  

-ÉxDl-- l  
-=U, l ) / ,

ooa Lpptpt  L r  pool

Equarior (56) is an algebraic equârioû for i/d. From ân actual srâre
(dr,p,d), its numerical solution, consid€ring an incremenl Àd, ields the
new vâlues d +Àd, p+(p/{i)^d. The new str€ss dr is given by the numerical
solution of rh€ âlsebraic Eq. (57).

The strâin rates âre,

dll= - 2,1L = - 2dlt =q:e= d.

di,=, tL=,11,=0, o:=-*
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we shall consider ùe "logârithmic plastic deformarion tensor",6P=/'DP
dr, the first component of which is,

;ïr =a- j tn p (5e)

The results are shown in Figs. l-8. tn Fig. I a power-hardening law
pi( d) = do( I + l/a) is consid€red. The damage is deliûen by B = | / p - 1, (29),
or by P=f-Jo, (30). In both câses, after a certâin amount of plastic
deformation depending on stress lriâriality. rrrrdôilit) ,,,kes placet diP '0.
The damage-relâted softening overcom€s lhe strain-hardening of the matrix
material.

-  p=-l-  - t

l, l-

-- \

é
o.1,..

"7 4

.-r-
|---|-_-F

022 = o33= k\1

0

o-1 02 0-3 0,4 ^ p 0.5

Fig l. SlresFn.âù ed dmitv ares vilh ducile lraclùE ddage
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If ihe infinitesimal strâin constiiutive r€lations, (41F(44), are used instead
of the finile strâin ones, instability is not revealed if P= 1/,p - I, even w th a
very high str€ss t.ia{iality (&=0 8) Il was demonstrated in S€ction 4 ibât
instability was impossible inde€d in that case. If B=/-/ô, instability is stil1
possible bul is drâmalicâlly postponed (Fig. l).

In Figs. 2 10 5 danage defined by ,=dol/C ((35) 10 (38)) is considered.
âs suggested by the Rice and Trâc€y formula. with the power-hardening law
of Fig. t. The effects of various sress triaxialities ând various initial void
volume frâcrions Â âre investigared. As expected, rhe smaller th€ volume
fraction /o the higher the siress triâxialily and plastic deformalion required
to yield instability. This is emphâsized in Fig- 6, where the plâstic strain at
instâbilily is plotted v€rsus on/d.e=(\+2k)/3(t-k) (thÀl hâs to be
distinguished from d./d0). The depend€nce on Jt is slisltly stronger thar
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03 0,4 â 
11

Fig. L Sr6tssrrÀin 6d detrsiry c!ûes wnh dùctile frætùE dmage

the squâring of the initial void fraction required to double the critical strain
obtâined by Mcclintock (1968).

\vilh B=ool/C. the infinitesimâl strain curves, shown in Fig. 5, do not
differ from the finite strain ones unlil instability. But the final decohesion
resuliing from these curves is entirely differcnt as show]l in Fig- 7 with a
reduced strain scâle (in Fig. 7. the power-hardening law is changed for an
exponential one: ql(d)=o0[2 exp(-20a)]).

The finite strain curves of Fig. 7 cleâ-rly show that the presena lheory, wilh
dâmage depending exponentially on oû/p: is perfectly fitted to the modell-
ing oI instability and d€cohesion in ductile fracturc. This ts Aot the case \|ûh
an expanential dependence on an alone.

Finally, it should be notic€d lhât the use of fraclure criteria, here É=É. or
p=pc or/=f. as nor consisrenl with rhe resulls of the present ânalysis. The

E="(r ' .1:r)
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criticâl vâlues of É, p or/, corresponding 10 material insiâbility, depend or
the meân stress on; see Fig. 8- This is in agr€ement with the experimental
results of Ber€min (1979) where â decrease of the critical void gowth at
instâbility with increasing stress ûiaxiality is obtâmed.

6. Finite element Ânrlysis of I sâck€d specinen

The analysis of ductile fracture and stâble cmck growth in a tbree-point
bend specimen has been p€rform€d wirh a 2D infititesimâl slrarn finite
elem€nt model (plane srrain). As pointed oul in Seclions 4 ând 5, the
infinitesimal strain approximalion is a serious limiÉrion of the present
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lr

theory. That is why Eq. (41)-(44) are modifi€d in ordet to include some linite
dekmatian elleû nam€ly. ùe rârio a-/p is substituled for d- into all the
exponentiâls, according to the finite deformalion relation (26), and d.q/p
for d.q into the plaslic pot€rtial (44).

A constant stiffness method is used. It requires the iterâtive computadon
of the 'iniriâl slfess'S=tÀsP ùat appeaÂ in ùe linear elastic relation
between th€ incremenls of stress and strain; Ào=aÂ. S. which is the
approximate form oi Ëq. (23). The initial siress, S, is computed wilh an
irnplicil algorithn (Nguyen, 1973); see Appendix. This algorilhm eliminates
the sysl€mâtic numerical errors usually found in the explicil m€1hod and is
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parlicùlarly suired ro Lhe presenr anaiysrs where marerial insrabilir) daP - 0
tales plâce,

The geometry of the specimen is specified in Fig. 9. The increments of the
displâcement u.=d o1 node A ar€ prescribed; the corresponding load is
d =P/24. The specimer is discreiiz€d into 377 cons.ant strair triangular
elements. 420 nodes and 8zl0 degr€es of libe(y. The size of the finite
elements at the crack lip is shown in Fig. 10.

Note that at th€ tip of a crack. wh€re steep gradienls of stresses and
especially strains take place, the cnticâl conditions for instabiliry shall be
achieved over som€ characteristic lenglh /.. relâled 10 interpÀrticle spacing-
Otherwis€ void coalescence and material decohesion will not occur. h th€
rumerical modelling. with conslanl strâin eiements. /. is the length o[ the
finite elem€nts at lhe crâck tip. lf the specimen size dt geometry are
changed. the elements at th€ crack tip will keep the same absolute siz€.
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gæn€q diffedl fron rhal ot load cùres).

Moreover, in order to model slâble crack gfowth, the l€ngth of the el€m€nts
on th€ crack prolongalion arc uniform.

The same expon€ntial strain-hardedng law as it Fig. 7 is considered:
9i(t)=o0t2-exp(-20d)l where o0=500 MPa. The elastic constÂnls arc
À=200 GPa and ,,=0.3. Accordirg to the discussion ir S€clions 4 and 5,
the definition of damage (35F(38) is used. So, rr" ductile lracture properties
ol rhe metal are delined b) t$)o parumeteN (l) 1". r€laled to ùe inte?drticle
spacing; ând 12) fn. rclared to rhe pa4icle xolune tacri,'. These âre required
for the chârâcterizalion of the pârticle size distribulion"-

The deformation of the crack tip zon€ is shown ir Fig. 10. In the two most
deforrned eleûents, undergoing stress triâxiâlilies d-/do of n€arly 3. the
damage increases râpidly. At some poinl, corresponding to the mâximum of

'Not€ that in a te.sil€ specinea. with no sr.tn Bradicnts. drc dùcdlity n dcpcndent on rhe
vôlunc rraciion Â orl!, 4 obeded by Edelson ùd Aâldsin ( 1962).
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the locâl slress-strain curves, as in Fig. 7, rhe deformâtion of these elements
increases abruptly. and the stresses decrease âccording to curves I ând ll of
Fig. ll. This quasi-{upture of ùe two el€ments mây be idenlified with the
coâlescence stâge of the duclile fràctur€ process. The node @ (Fie. l0) is to
longer bound to node C (initial crack tip) nor to the symm€lric node d'. So
stable crcck gtowth accurs natunl|. by locali:ation of deformalion, rcsulting
lrcm the conttitttiæ rclatiôns onlf, vilhout ir being necessary to deline a
criical stale nar 1o rclease rr€ ,rder as in usual ûodels. A funher stage of
stable cra€k growth (four nod€s. d=0.748 mm) is shown in Fig. l0; th€
strains in the most dèformed elements exceed unilv.

As constânt slrain elemenls are used. the locâlizalion of deformalion
lakes place over rhe whole elemeni. That is why very thin elem€nts are
need€d âlong the crack palh. This drawbâck should be avoided with
nonlinear elements thât would give a betler locâlizâtion of deformation and
allow crack propagation in any direction. Note that the blunting of the
initial crack lip, that may be oi imporlance for ahe initiation of crack
gowth, is not modelled by ihe simple consrânt strain elements of Fig. 10.

The loèd-displac€ment cùrves are given in Fig. ll for various inilial void
volume frùctions 16=10 '!. l0 r, l0 o and 0 (no damag€). ln spite of
slrain hârdening, ùp to 2oo âl the most. the load rapidly stops increasing
when ductil€ frâcture and srable crâck growlh take place. After the mâxi-
mum load the ductile tearing of the specimen goes on under decreâslng
)oad, in agreement with the acknowledged expÈrimenlâl evidence

7. Conclusions

Constitutive relarions have been developed for finite iransformation of
plastic dilalant mùleriâls. The dihlancy is related to the growù of voids
nuclealed at particl€s presenl in lhe mairix mâlerial. These conslitùtiv€
relations model the duciile fraclure of metals. Thel have been derived. in a
macroscopic âpproach, from ûe int€rnâl variâbles hwoihesis within the
ftam€sort  ot  g€nerrhzed \(dndard mater iul i .

An exponentiâl dep€ndence of ducdle frâclure damage on str€ss tlia"{ial-
rr)  b demoncrrared. dnd the occurrence ot mdrefrâl  innabi l i r )  oaP .  0 'hosn
fof various examples. The linite lrânsformalion effecls irre âlso discussed.

f inire <lem<nr rnJl) \e.  of  â c r l ted 'pcLimen hr!e been periurmed. .-
Srâbl< crJck srowrh oLcurs ndturdl l \  by locel i ;arron ot r letormai ion. M i \ \ t  

I  i

in b€tter agreement with the physi€al behârior of metals. and th€ method is
simpl€r. and probably che.rper than usuâi node relaxirtion models. An
advânrùge of the presenl approach is thât nonsl_mmetricrl colnplex loading
condnions (û€ angled crack extension) and 3D-problems could be hàndl€d,
without special finire elÈnent modelling in the crack tip zone.

339
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In further applications nonlinear elements must be considered, âr con-
stant strain triangulff elements are not suitable for localizâtron of deformâ-
tion. The necessity of modelling the initial clâck tip blunting and of a
complete finiae lransformation formulation, according to the equations of
Section 3, should Âlso be inv€stigaaed.

As for the parametets involved in the lheory, C and , are derived from
microscopic models, and could be checked by experimeûts. The lesthg and
computing of circumferertiâlly notched tensil€ specimens give /0, which
should be consistent with the observed inclusions and/or precipilates
volume fractions, âccording to th€ micromechanisms involved. The châr-
acledstic length /" thât intervenes in crack problems, though r€levant lo
microstructural aspecls (a few interpârticl€ spacings), must b€ regard€d âs
ess€nrially ân empirically obtained quântity. Its deteminaiion requires
experiments on appropriate specimen geometries, which can be modeled
with 2D-finne element anâlyses. like side gooved C7 specimens or cir-
cumferenrially cracked tensile specimens. Such an exp€rim€ntal program, in
collaboration wirh the Frcnch .eseârch group B€remin, is in progress on
A508 Cl 3 steel.

Appendix. Inplicit slgorithm lor the constitutiv€ r€lâtions with ductile
nrpturc d,ùnage

In the numerical solution of the elastic-plâsric problem, for rhe inctemenl
r-r+^r, the initial stress S=tÂ€P has to be expressed as a function of
d(r), d,(r), ând Às. The following form of the conslitutive relations is used:

^r=u 
p(Âe-aeP),

^d. 
=(3À- + 2FX 

^€- 
-a€l).

a" =^-: .
2iJ,(r+Ar)

l

^râ=Àfr 
8(B+rp) exel ù(o. +À'.) / ,

,/i

(A.1)

(A.2)

(A.3)

(A.4)

(4.5)

(A.6)rB=r,a e-p( !1"- +,r'-;).

-e i (d+Ad)=o (A.7)
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Thêse r€lations âÎe çdtten at time r+Ar insæad of I in th€ explicit
algorithnr and the plastic potctrtial f=0, (4.7), is uscd i$tcad of Eq. (45).
lf Àr and Âr. a& climinatcd b€tween (A.l) and (4.3), (A.2). ald (À.4)
respcctivcly,

t ,7= u Dl4urou,
ob/l

( . .  - . ,1\ cxptp6b: [ 'ô +(3À'+2,,){Â!" -aê: )l} (A.8)

r+ Âr=r+2p(Aa- Â.t)=s+2rÂe-rÀay'f 4.
IAGTat

theû,

l  r  * :-  l t "*a ' )= '+2p^e. (A.e)
1 nqi;;l;Ï /'

Taking thc s€cond invâriâôt of ihis equation, we obtain,

fi1s+a4 +pa"/l = |. (A.lo)
,t3

12 = 
i$+2cae\$+2ûe). 

(À.l l)

F4uatioD (4.9) Eves,
v{ s+A.' I

---:-;___-:_ =, + 2tr 
^2.VEGTI

Fitrally,

6"r= $1s+zsae). (A.r21
zl

Equations (4.7) atrd (4.10) givq

!::r4s _e(d+Âd)+,11 DB( p+ 
^p)

t . '  
o" f r l l=0.  {A.r3)exet;; ldo +(3À'+2,!X ar- - .)

Th€ €xpoûertial is elimiûâted between (4.8) and (À,13),

a* = Îe [rrr ' -a ' t+ rr '&-r i .  {A.r4}_ r to \"  P I
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and (A.6) is wriuen as

- , t
ÂÉ=DÀd/t  expl  i : -  ld-  +( lÀ'  *  2F)(aF- at i ) l f  (n. ts)

' tpoo'  -  ' t

The subslitution of (A.14) for Â€: into (A.13) ând (A.15) and of (A.15)
for ÂB into (A.13) yields a sinple atsebaic equation lor La alone. The
numerical solution of this equaiion gives Âd as â function of d, d, B and Â€.
The iniriâl siress S=tÀ€P =(lÀ* +2p)Â€l +2pÂeP is rhen given by (A.12)
and (4.14).

,vore: Wiah th€ infinitesimal strâin hypolhesis, p=1. In the âbove equa-
tions the density p is grven by (A.15) and B+ÂP=B(p) (see Section 3).
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