Efficient simulation of Gaussian Markov random fields by Chebyshev polynomial approximation

Abstract : This paper presents an algorithm to simulate Gaussian random vectors whose precision matrix can be expressed as a polynomial of a sparse matrix. This situation arises in particular when simulating Gaussian Markov random fields obtained by the discretization by finite elements of the solutions of some stochastic partial derivative equations. The proposed algorithm uses a Chebyshev polynomial approximation to compute simulated vectors with a linear complexity. This method is asymptotically exact as the approximation order grows. Criteria based on tests of the statistical properties of the produced vectors are derived to determine minimal orders of approximation.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-02075386
Contributeur : Nicolas Desassis <>
Soumis le : jeudi 21 mars 2019 - 13:28:52
Dernière modification le : vendredi 22 mars 2019 - 01:33:38

Lien texte intégral

Identifiants

  • HAL Id : hal-02075386, version 1
  • ARXIV : 1805.07423

Citation

Mike Pereira, Nicolas Desassis. Efficient simulation of Gaussian Markov random fields by Chebyshev polynomial approximation. 2019. ⟨hal-02075386⟩

Partager

Métriques

Consultations de la notice

42