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ABSTRACT: Major solutions needed in fracture analysis are (a) simple and accurate material
characterization and (b) easy transferring of material data to cracked structures. In the pro-
posed methodology, constitutive relationships, including cavity growth and coalescence, are
used. Material characterization is based on the simple notched tension test. Several structural
steels have been characterized, especially AS08 steel, and the direct transferring of material
data has been demonstrated with tests on circumferentially cracked tension specimens.

In addition, the extrapolation of material data to different inclusion contents and temper-
atures was attempted, with favorable results for the first factor through a specific parameter
of the model. The temperature dependence of AS08 steel ductility is related to an inverse
strain rate effect on the flow curve; the modeling of this effect gives encouraging results, but
it must be refined to produce an effective prediction.

KEY WORDS: ductile fracture, damage mechanics, local approach to fracture, crack initiation,
stable crack growth, A508 steel, inclusion contents, notched tension test, fracture mechanics,
nonlinear fracture mechanics

Some of the major problems engineers have to cope with in fracture analysis are the
following:

(a) material characterization, that is, the generation of adequate data from specimen
testing, and
(b) the transferring of fracture mechanics data to the structural analysis of components.

As a matter of fact, the generation of material data can be money and time consuming:
for example, the determination of J-Aa resistance curves is still a toilsome task, though some
progress was gained with partial unloading compliance methods. Frequently, existing ma-
terial data do not correspond to the specific application (in reference to temperature, strain
rate, irradiation, aging, and so forth), and hazardous extrapolations are necessary.
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* Senior engineer and engineer, respectively, Framatome, Centre de Calcul de la Division des Fab-
rications, BP 13, 71380 Saint-Marcel, France.

332

With permission of ASTM
(March 11, 2019)

in Landes, J., Saxena, A.,
Merkle, J., Eds., Nonlinear
Fracture Mechanics:
Volume I, Elastic-Plastic
Fracture, STP995V2-EB,
ASTM International, West
Conshohocken, PA, 1988.
https://doi.org/10.1520./
STP995V2-EB.


Propriétaire
Texte tapé à la machine

Propriétaire
Texte tapé à la machine
With permission of ASTM
(March 11, 2019)
in Landes, J., Saxena, A., Merkle, J., Eds., Nonlinear Fracture Mechanics: 
Volume II, Elastic-Plastic Fracture, STP995V2-EB, ASTM International, West Conshohocken, PA, 1988.
https://doi.org/10.1520./
STP995V2-EB. 

Propriétaire
Texte tapé à la machine

Propriétaire
Texte tapé à la machine

Propriétaire
Texte tapé à la machine


ROUSSELIER ET AL. ON DUCTILE FRACTURE ANALYSIS 333

On the other hand, the transferring of fracture mechanics data to industrial components
may be questionable, especially if complex situations are involved, including heterogeneous
materials, residual stresses, thermomechanical loadings, historical effects, or other factors.

A local approach of fracture is particularly suited to solving these two difficulties. It can
be defined very generally as a combination of the following:

(a) the computation of local stress and strain in the most loaded parts of a component
or a structure and

(b) physical fracture models corresponding to various mechanisms: cleavage, ductile frac-
ture, creep, and so forth.

Actually, the generation of material data is simple in a local approach to fracture. The
application of a local approach to fracture in complex structural situations is direct, as is
shown in the accompanying paper by Devaux et al. [I], and the progress of numerical
analysis software and hardware makes the computational cost a less and less significant
consideration.

The present paper deals only with ductile fracture. The development of a new methodology
for ductile fracture analysis was undertaken a few years ago in a cooperative program between
Electricité de France and Framatome; this methodology is based on a local approach to
fracture and damage mechanics. The paper focuses on material characterization, deriving
from the very simple notched tension test (@) the ductile fracture model and parameters
calibration and (b) the prediction of the inclusion content and temperature effects on ductile
fracture properties. In addition, the ability of the model to predict crack initiation and
growth in a structure is briefly presented in the last section of this paper.

The Ductile Fracture Model—Parameters Calibration

Ductile fracture results from the formation, growth, and coalescence of cavities. The case
of intergranular cavities, which corresponds more specifically to creep damage, is not con-
sidered here.

In a local approach to ductile fracture, a damage variable is introduced. This variable is
computed at every point on the structure. Its evolution is a function of local stresses and
strains. For example, if isotropic cavity growth only is considered, the damage variable can
be the equivalent cavity radius R; its evolution can be given by the well-known equation
by Rice and Tracey

3(:,,,) )
€q

% = (.283¢L, exp (20
where ¢, = ,/3 is the mean hydrostatic stress, and o, and &, are the equivalent stress
and plastic strain rate, respectively. Then, a very simple criterion for cavity coalescence can
be formulated: it is based on the assumption of a critical cavity growth (R/R;)., where R,
is the initial cavity radius. This criterion has been widely used in local approach to fracture
[1,2].

In the proposed methodology a somewhat different formulation is used. The model refers
to the basic assumptions of “continuum damage mechanics,” that is, the damage variable
is included in the constitutive relationships of the material; there is no conceptual difference
between the hardening variable related to plastic deformation and the damage variable.

The constitutive relationships are derived from a plastic potential F, and yield criterion
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F = 0, with the normality rule [3,4]. The function F is

F(.p.B) = 6, — R(p) + B(B)D exp (Z—l) (2)

where D and o, are constants, p is the hardening variable (the cumulated plastic strain if
p = €2,), and B is the damage variable. B is defined in the Appendix by B = 0/v, where v
is the average volume of the cavities. Both p and B are scalar, as isotropic hardening and
damage are assumed. The function R( p) defines the hardening curve of the material (stress-
strain curve). The function B(B) is

_ Glfu exp B _
R e @)

where f, is a constant, indicating the initial volume fraction of cavities, and f is the actual
volume fraction of cavities.

The derivation of Egs 2 and 3 is detailed in the Appendix; it is not significant to the
following results. What has to be remembered is that damage results in softening of the
material and fracture proceeds from the competition between hardening and damage: when
damage overcomes the hardening of the material at the tip of a crack or in the center of a
tension specimen, there is strain localization, which rapidly results in tremendous strains
and damage. The stresses decrease abruptly and vanish, and the zone of strain and damage
localization can be assimilated to a crack.

Therefore, it is not necessary to introduce a critical value of the damage variable. As a
matter of fact, fracture can occur for different values of the damage variable, depending on
the previous history of the material. The only material parameters are the constants of Egs
2 and 3: D, o, and f,. When steep gradients of stress and strain exist, as at the tip of a
crack, it is acknowledged that a critical distance (. has to be added to the local fracture
criterion: [, reflects the statistical aspects of fracture, the interaction between the inclusions
and the crack tip in the case of ductile fracture.

From cavity growth measurements and theoretical considerations, the authors concluded
that the constant D does not depend on the material and can be taken to be equal to 2, at
least for the initial volume fraction of cavities f, equal to or smaller than 107 [4]. The three
remaining material parameters to be calibrated are these:

(a) fo, related to the volume fraction of inclusions f,;

(b) o,, related to the resistance of the metal matrix to the growth and coalescence of
cavities; and

(¢) (.. related to interinclusion spacing.

Calibration Procedure
How can the parameters f,, o,, and {, be calibrated? Good estimates of f, and [, are
obtained from metallographic examinations of the inclusions [4]

fﬂ = fU(deV)II
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where d,, d,, and d, are the average dimensions of the inclusions, z is the direction of the
load, and N, the number of inclusions per unit,of volume. The value f, can be calculated
either from the metallographic examinations or from the chemical analysis (Franklin’s for-
mula [5]).

The stress level of the hardening curve of the material gives a poor estimate of o, [4]. In
practice, mechanical testing is necessary to calibrate o,. The basic specimens are axisym-
metric notched tension specimens. The use of these specimens might seem surprising as far
as fracture mechanics is concerned, but the following must be noted:

1. In a local approach to fracture, uncracked geometries as well as cracked geometries
can be analyzed, and material parameters can be transferred from one geometry to the
other.

2. Once a crack has been initiated in the center of a notched tension specimen, it responds
like a cracked specimen.

The calibration procedure is depicted in Fig. 1. In notched tension specimens, the initiation
of a crack results in a marked change of the slope of the load-displacement curve, Point A
in Fig. 1, as shown by tests interrupted before and after this point [6]. In the numerical
simulation of the test, the location of this point depends on the parameters o, and f, only,
and not on (,, as there is initially no steep gradients of stress and strain. If f, is known, the
comparison of experimental and numerical curves makes it possible to calibrate the param-
eter o,.

The crack propagation rate, which depends on [, is related to the slope of the postinitiation
curve, AB in Fig. 1. In a numerical calculation , is the length of the finite elements in front
of the crack tip. So, the estimated [, = 5(N,)~"" can be checked with the comparison of
numerical and experimental postinitiation curves.

Let us point out that no crack growth measurements are necessary, which makes the
calibration procedure a very simple one compared with J-Aa resistance curve testing. On
the other hand, a numerical simulation of the tests is required, though, fortunately, existing

AQ : DIAMETRAL CONTRACTION
A, A’ : CRACK INITIATION
AB, A'B’ : CRACK PROPAGATION .
LOAD LOAD -
AL A) %_,
oy, fcj only j
a
; ¢ onl
8 8 e 0Ny 5
- —
L0 =0,-0 00 =0,-0
(a) EFFECT OF a4 (OR fo) (b) EFFECT OF Qc

FIG. 1—Numerical load-displacement curves of a notched tension specimen (schematic).




336 NONLINEAR FRACTURE MECHANICS: VOLUME I

calculations can often be used. Anyway, two-dimensional elastoplastic analyses are no longer
a problem with recent computers. The use of axisymmetric specimens makes these two-
dimensional analyses perfectly suited.

The constitutive relationships with ductile fracture damage were implemented in two finite-
element programs:

(a) the TITUS program, a general system for mechanical analysis developed by
Framatome; and

(b) the ALIBABA program, a two-dimensional program developed by Electricité de
France.

Numerous cross-checks of the two programs demonstrated that both give practically iden-
tical results. So the results obtained with the two programs will not be differentiated in the
following sections. With both, the large changes in geometry are taken into account by
modifying the coordinates at each load step.

Ductile Fracture Characterization of Structural Steels

The foregoing calibration procedure was applied to several structural steels:

1. A low-alloy rotor steel—The specimens were taken in the tangential direction of a
500-mm-thick turbine disk.

2. An austenitic weld—The specimens were taken at the bottom of the 70-mm-thick weld
in the transverse direction.

3. A first heat, Heat A subsequently, of A508 Class 3 steel—The specimens were taken
from a nozzle dropout of a 200-mm-thick pressurized water reactor (PWR) vessel shell, in
the long (that is tangential) direction.

The chemical composition of these steels is given in Table 1. The metallographic exam-
inations resulted in f, = 104, (. = 0.4 mm for the rotor steel [4] and the austenitic weld
[7], and f, = 1.6 x 107, {. = 0.55 mm for Heat A of the AS508 steel [8].

The diameter of the minimum cross section of the axisymmetric notched tension specimens
was ¢, = 10 mm, and the outer diameter was 18 mm. These specimens only differed in the
notch radius, which was 2, 4, 5, and 10 mm for the AE2, AE4, AES, and AE10 specimens,
respectively.

For the rotor steel, two AES specimens were tested at 40°C. The right location of the
initiation point was obtained with o, = 490 MPa. The experimental and numerical load
displacement curves are compared in Fig. 2. The agreement is excellent, and thus the
calibration of the parameters is satisfactory. In Fig. 3, the highly damaged zone (B > 4.5,
that is, the void growth ratio v/v, > 90), which is assimilated into the cracked zone, is
localized in the minimum cross section of the specimen. Its radius is in good agreement with
the experimental cracks derived from tests interrupted at the same diametral contraction
Ad = 1.5 mm. The numerical crack resistance curve (loading parameter versus crack area)
is shown in Fig. 4; it is very close to a straight line. This feature, which is also observed
with other steels, makes it possible to determine the crack resistance curve of a material
with a single specimen: the load-displacement curve gives the initiation point, and the
interrupted test gives the final crack area.

For the austenitic weld, AE2, AE4, and AE10 specimens were tested at 20°C [7]. The
minimum cross sections of the specimens were located in the middle of the weld line. The
strong anisotropy of the weld metal made the diametral contraction measurements hazard-
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FIG. 2— Load-displacement curve of a rotor steel notched tension specimen.
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FIG. 3—Damaged zones in a rotor steel notched tension specimen.
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FIG. 4—Crack resistance curve of a rotor steel notched tension specimen.

ous. As a matter of fact, only the diameter at fracture of the specimens, coinciding with
crack initiation for this material, could be measured on the broken test pieces. A reasonable
agreement between these measurements and the numerical initiation points of the three
specimens is obtained with o, = 565 MPa (see Fig. 5). The very steep postinitiation curve
calculated for the AE2 specimen is coherent with the experimental coincidence of initiation
and fracture (taking into account that the stiffness of the testing machine is finite, which
promotes instability). Nevertheless, stable crack growth measurements would be useful to
check the value (. = 0.4 mm.

For A508 steel, Heat A, two AE2 specimens were tested at 100°C. The numerical curve
with the calibrated value o, = 445 MPa is compared in Fig. 6 with the experimental curves.
The calibration of the parameters is satisfactory. In Fig. 7, the localization of damage and
the corresponding collapse of longitudinal stress in the vicinity of the minimum cross section
of the specimen is shown. (The diametral contraction Ad is about 2.6 times the end dis-
placement u.; crack initiation is at 4. = 0.61 mm.)

In the conclusion of this section the following can be asserted:

1. The material characterization can be performed on various steels with simple mea-
surements and tests (some additional specimen testing would be necessary to confirm the
characterization of the austenitic weld).

2. The numerical simulation of the notched tension test is in good agreement with the
experimental results, for both crack initiation and propagation.




340 NONLINEAR FRACTURE MECHANICS: VOLUME I
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FIG. 5—Numerical load-displacement curves and experimental initiation points of the aus-
tenitic weld.
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FIG. 6— Load-displacement curve of A508 steel notched tension specimen.
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FIG. 7—Longitudinal stress and damage at gauss integration poinis in the vicinity of the
minimum cross section.

Prediction of the Inclusion Content Effect on Ductile Fracture

In this section two additional heats of A508 Class 3 steel were tested, Heats B and C.
For Heat B, the specimens were taken from a nozzle dropout of a PWR vessel shell, in the
transverse (that is, axial) direction. For Heat C, the specimens were taken in the longitudinal
direction from a 200-mm-thick cylindrical forging, used for large-scale pressurized thermal
shock testing at the Staatliche Materialpriifungsanstalt (MPA) in Stuttgart [9]. The chemical
compositions of both steels are given in Table 1. From the metallographic examination of
Heat B, a good estimate of the initial volume fraction of cavities to be used in the calculations
is f, = 10* [8]. No metallographic analysis of Heat C has been performed vet, but in this
very clean steel the inclusions are expected to be more or less spherical, so that f, = f, can
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be assumed. According to Franklin’s formula [5], the volume fraction of inclusions is f, =
7 x 1072,

Considering that the key difference between the three heats of AS08 steel is their inclusion
content, the point of most interest is whether or not it is possible, with the sole parameter
fo, to estimate the ductility of the two “unknown™ heats, B and C. That is why the first
finite-element analyses were performed with the mechanical properties of Heat A (same
stress-strain curve, o, [, and other factors) but with different f, [10 %, 1.6 x 10 ' (as in
Figs. 6 and 7), and 7 x 10 °].

The results are given in Fig. 8, together with the mean experimental fracture initiation
points deduced from the experiments on AE2 notched specimens. We can conclude that:

1. The parameter f, represents with a good accuracy the effect of inclusion content in
the range of interest (10 % to 10 7).
2. As first estimates, f, = 10~ and 7 x 10 ° can be retained for Heats B and C.

Note that from Fig. 8 an approximation formula can be proposed between f, and the
numerical ductility at fracture initiation €, = 2 In (b,/db,)

e = 0.104f, "M

80
EXPERIMENTAL INITIATION
HEAT 8 I hHeaTa
L I HEAT C
f |
50 !
-5
7x10
a\ ¢M"*
16x10%
z a0
a
<
g AS08 Class 3
NOTCH RADIUS 2 mm (AE2)
TEST TEMPERATURE 100°C
NUMERICAL CURVES :
20 HEAT A, D =21,
04 =445 MPa, Ec =0.55 mm
Same stress-strain curve for all heats.
0 1
a 0.5 1 15 2

DIAMETRAL CONTRACTION, AQ =0, - 0.mm

FIG. 8—Numerical load-displacement curves and experimental initiation points of A508
steel.
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FIG. 9—Load-displacement curve of A508 steel notched tension specimen.

where the three points corresponding to f, = 7 x 107%, 1.6 x 10%, and 10~ are in per:
alignment in a log-log diagram.

Additional calculations were performed with the true stress/strain curves of Heats B
C. The stress-strain curves of Heats A and B are very close, so it was not necessary
calibrate the parameter o, (o, = 445 MPa) again. The stress-strain curve of Heat C
significantly lower than those of Heats A and B, so the parameter o, had to be reduced
relation for Heat C. The resulting numerical curve, with o, = 400 MPa, is plotted
Fig. 9.

In conclusion, a good prediction of the effect of inclusion content on the ductile fracti
properties of a steel is obtained in the proposed methodology, through the parameter f,.

Prediction of the Temperature Effect on Ductile Fracture

Carbon steels can present a drop in ductility and fracture toughness in the temperature
range 100 to 400°C, known as the “blue brittleness.” Earlier work [10] has shown that A508
Class 3 steel presents this phenomenon; it has been demonstrated that the temperature of
minimum fracture toughness depends on the strain rate and that there is a clear correlation
between this phenomenon and dynamic strain aging, resulting from dynamic interactions
between dislocations and intersticial atoms such as nitrogen [/7,72]. The macroscopic man-
ifestations of dynamic strain aging are the serrated flow observed on smooth tension spec-
imens (Portevin-Le Chatelier effect) and an inverse effect of strain rate on the flow curve
(hardening curve) of the material. This inverse effect promotes flow localization between
cavities, that is, cavity coalescence, which explains the lower ductility and fracture toughness.

Amar and Pineau have performed tests in the temperature range 100 to 450°C on notched
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tension specimens, taken in the longitudinal direction from a nozzle dropout of a PWR
vessel shell [/2]. The chemical composition qf the steel (A508, Heat D) is given in Table
1. Mean deformation in the minimum cross section and diametral contraction at fracture
initiation are plotted in Fig. 10. In terms of a local approach to fracture, the authors used
the critical cavity growth criterion (R/R,). and, of course, the same temperature dependence
of (R/R,). as in Fig. 10.

An equivalent approach can be performed with the proposed methodology. The param-
eters f; and (,, related to the inclusions, should not depend on the temperature. The dynamic
strain aging effect, resulting in an easier flow localization in the metal matrix between cavities,
is naturally expressed through the parameter o,. which is related to the resistance of the
metal matrix to the growth and coalescence of cavities. The calibration procedure presented
in the first section can be used, and o, will present the same temperature dependence as in
Fig. 10.

owever, a more ambitious objective is to really predict the effect of temperature (and
rain rate) on the ductile fracture properties of the material. For this, the inverse effect
rain rate on the flow curve R(p) is introduced (see the Appendix)

R(p.p) = R(p) + h(p)

ym the smooth and notched tension tests performed at 300°C and at various strain rates
eats B and D, including those in Ref /2, the following relationship can be used as a
ipproximation

R(p.p) = R,(p) — KpIn (f) 4)

e K = 50 MPa, and p, = 10 * s ! is the reference strain rate of the characterization
. In the step-by-step elastoplastic numerical calculation, the equivalent strain rate p

| E
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FIG. 10—Temperature dependence of fracture initiation in notched tension specimens.
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FIG. 11—Inverse strain rate effect on damage in a notched tension specimen.

calculated at the preceding step is used in Eq 4 to determine the hardening curve of the
current step.

In the first attempt to model the strain aging effect, the reference calculation is that of
an AE2 specimen of A508, Heat A (see Fig. 6). The diametral contraction at fracture
initiation is Ad, = 1.62 mm, without strain aging; K = 0 in Eq 4. Two calculations with
the inverse strain rate effect were performed, with K = 50 and 250 MPa. The displacement
rate u. imposed at the end of the mesh is such that the mean strain rate in the minimum
cross section is € = —2&/d = 107 s7'; at the larger strains it corresponds to it, = 1.4 x
107 mm/s.

As h(p) = 0 for p = 1077 s7', the load-displacement curves resulting from the three
calculations are almost indistinguishable. But, as was expected, the local values of the damage
variable, plotted in Fig. 11, are progressively more important in the case of inverse strain
rate effect, and a forward fracture initiation is obtained: Ad, = 1.58 mm (time = 343 s)
for K = 50 MPa, and Ad, = 1.47 mm (time = 309 s) for K = 250 MPa. Note that the
same parameter, o, = 445 MPa, is used in the three calculations. As was also expected,
the inverse strain rate effect gives smaller values of the damage variable at fracture initiation,
that is, smaller critical cavity growths.

But even with the artificially enlarged inverse strain rate effect (K = 250 MPa), the
decrease in ductility Ad, is smaller than that measured between 100 and 300°C (Fig. 10).
So, before a real prediction of the temperature effect on ductile fracture can be used, more
experimental work on material characterization at 300°C and a more refined numerical
algorithm for the inverse strain rate effect are needed.
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Application to Cracked Structures

The preceding sections were devoted to material characterization and to the prediction
of material properties as they are affected by various factors. The transferring of the char-
acterization data to structural situations has still to be illustrated—that is to say, to what
extent has the model, calibrated with notched tension tests, the ability to simulate the
behavior of a cracked structure? In the present application, the structures are simple cir-
cumferentially fatigue precracked tension specimens (see Figs. 12 and 13); this geometry
was chosen because it can be analyzed with a two-dimensional calculation. Other applications
to different geometries and thermomechanical loadings are in the making and cannot be
reported in this short paper.

Two different specimen sizes were tested at 100°C; the outer diameters were ¢ = 30 and
50 mm. All specimens were made of AS08 Class 3 steel, Heat A. The radii of the uncracked
sections after fatigue precracking were r, = 8.3 = 0.2 mm (¢ = 30 mm) and r, = 13.8 =
0.2 mm (& = 50 mm); the initial crack length was a, = &/2 — r,. The elongation was
measured on gage lengths L, = 78.4 mm (¢ = 30 mm) and L, = 130.6 mm (& = 50 mm).
The interrupted test method was used: the specimens were loaded up to various elongations,
unloaded, heat-tinted, and broken in liquid nitrogen. This allowed a direct measurement
of the crack growth Aa. Note that Aa includes the “stretch zone” due to the initial blunting
of the crack tip. More details can be found in Ref /3. Each specimen gives only one point
(plotted in Fig. 12 or Fig. 13) of the experimental crack resistance curve—the loading
parameter versus crack growth. The loading parameter is the elongation and not the
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FIG. 12—Crack resistance curve of a circumferentially precracked tension specimen (b 30
mm).
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FIG. 13—Crack resistance curve of a circumferentially precracked tension specimen (&b 50
mm).

J-integral, usually plotted in a crack resistance diagram. The elongation data are the
direct experimental data to be compared with calculated data.

Just as in the notched specimens, the stable crack growth is obtained numerically by the
propagation of a highly damaged zone (see Fig. 14). The numerical crack growth resistance
curves are plotted in Figs. 12 and 13 with the following results:

1. The initiation points coincide almost exactly with the experimental ones.
2. The stable crack growth is predicted with very good accuracy up to Aa = 1 mm.
3. For Ag > 1 mm, the calculation overestimates the experimental crack growth.

At least two factors can explain this latter discrepancy:

1. In real three-dimensional ductile crack growth, the crack surface, initially flat, becomes
more and more distorted. The different planes along the crack front have to be reconnected
by shear bands for the crack to continue its growth. This shear fracture, and the corresponding
additional energy, are not taken into account in the model. based on cavity growth.

2. There is a statistical effect, in which the volume of material involved in crack initiation
and early crack growth is more important than that involved in subsequent crack growth.
Thus. the probability of having large inclusions in that volume of material is lower for large
crack growth, and a statistically lower value of f, should be used. Note that both statistical
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FIG. 14—Damaged zones in a circumferentially precracked tension specimen (¢ 30 mm).

and three-dimensional effects could be taken into account with an artificially lower value
of f,. However, as a whole, the numerical simulation of crack initiation and growth can be
considered of good accuracy for industrial applications.

Conclusions

A new methodology for ductile fracture analysis, based on a local approach to fracture
and damage mechanics, has been applied to the characterization of structural steels: a Ni-
Cr-Mo rotor steel, an austenitic weld, and several heats of A508, Class 3 steel. The complete
characterization can be performed with simple measurements and tests on notched tension
specimens.

An effective prediction of the effects of inclusion content and temperature on ductile
fracture has been attempted, with favorable results for the inclusion content effect, through
a specific parameter of the model. For the temperature effect, a more refined numerical
modeling of the inverse strain rate effect on the stress-strain curve should be the subject of
future work.

The transferring of material characterization data to cracked structures is direct, and
the numerical simulation of crack initiation and growth in circumferentially cracked
tension specimens is in good agreement with the experimental results. Additional appli-
cations in the case of thermomechanical loadings are in the making, with favorable prelim-
inary results.
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APPENDIX

Theoretical Derivation of the Equations of the Ductile Fracture Model
Continuum Thermodynamics

Only the information needed for the comprehension of the model is recalled in this short
section. For more details, refer in particular to Ref /4.

The thermodynamic state of an element of material can be defined by “observable”
variables (elastic deformation €, temperature T, and so forth) and “internal’ variables a,
which reflect various dissipative mechanisms (plastic deformation (hardening), damage, and
so forth). Considering specific free energy ¢ in the isothermal case, & = & (€, a), it can
be shown that dissipated power ® > 0 takes the form

o b

o= Zer _ 39,
5 3 Tt (5)
and that
g ¢
b~ e (6)
where p is the mass per unit of volume. Entering the ““forces™ A associated with &
id
A= —
F™ (7
Equation 5 is thus written in the form
P =2V X

with X = (¢7, @) and Y = (a/p, A). The definition of constitutive relations consists of linking
the X to the Y.

In the standard model, viscoplastic case, a convex viscoplastic potential 2(Y'). and criterion
of plasticity, F = 0, are entered, so that X = NOF/aY, that is

i e ke
o
o5)

P (8)
L OF
“T A

The first relationship (Eq 8) is the classical normality rule. In the standard model, the
behavior of the material is entirely defined by the choice of the two potentials, & (e, a)
and F (ag/p, A) or Q (a/p, A).
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In the application to ductile fracture, the internal variables are divided into:

(a) a hardening variable marked p and
(b) a damage variable marked B.

Derivation of the Model

Having defined the purpose of the model as the plastic deformation and ductile fracture
damage of metals, and its scope as the continuum damage mechanics, in the final analysis
the model is based on two concepts only:

(a) the “principle of simplicity” (choice of the simplest formulation in a given theoretical
framework) and
(b) the standard model (Hypothesis H1).

The application of the principle of simplicity leads to the hypotheses set out below:

Hypothesis H2—The internal hardening and damage variables p and B are scalar (hy-
pothesis of isotropy), and the “‘forces” associated with p and B are denoted P and B,
respectively.

Hypothesis H3—The thermodynamic potential ¢ (e°, p, B) is of the form

b = b.(e) + d,(p) + by(B)

which, according to Eq 7, simply yields P = P(p) and B = B(B). The elastic constitutive
relationships are assumed to be linear, hence

&, = e“Le/2

according to Eq 6. L is the matrix of elastic moduli.
Hypothesis H4—The plastic potential F(&,P,B), in which @ = a/p, is of the form

F = Fl(d-equ) + P‘:((-T,,,,B) (9)
where

F, = &, + P(p) (von Mises yield criterion)
(10)
F, = B(B)g(d.)

Hypothesis H4 calls for some comment.

1. F only depends on the first two invariants of the stress tensor. The specific nature of
the model (ductile fracture) appears through the first invariant o,,.

2. The additive form (Eq 9), only, yields simple constitutive relationships in light of Eq
8 of the standard model. Equation 10 is also the simplest possible.

3. & = o/p and not o enters the plastic potential, in light of the expression of dissipated
power (Eq 5). In classical plasticity, the hypothesis of incompressibility makes it possible
to neglect the variations of p, but this hypothesis is no longer acceptable for modeling ductile
fracture. In the present model, in the absence of damage (B = constant), we have p =
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constant, except for elastic deformations; in the opposite case (B variable), one can write
p = p(B) as a first approximation.

The consequences of hypotheses H1 to H4 are examined below.
Neglecting the variations in volume due to elastic deformations, the mass preservation
law can be written

p+3pér =0
However
b =p'(B)B
and the relations in Eqs 8 yield
3é7, = AB(B)g'(6)

B = rg(6n)
Consequently

g'(Gm) _ p'(B)

g(6.)  B(B)p(B)

The two members of this equation are functions of distinct variables, &,, and B; they are
therefore equal to a constant, the dimension of which is the reciprocal of a stress and which
is called 1/c,. The integration of g'/g = 1/a, leads to

g(é,) = D exp (f:) (1)

in which D is the constant of integration. Here, o, and D are the first two parameters to
appear in the model.
In light of Eq 11, the plastic potential is written as in Eq 2

a8 o On
F - R(p) + B(B)D exp (pm)

in which R(p) = —P(p) is the hardening curve of the material. The relations in Eqs 8 of
the standard model finally lead to

. 351’
e = PE:
(12)
b= p—(B) D exp (ﬁ)
30, PO,
p=A
(13)
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where

and

are the deviators of o and €#, respectively. Computation of €2, yields éz, = p; the internal
hardening variable thus identifies with the cumulated equivalent plastic deformation.

The function B(B) remains to be specified. Considering cavities of any shape with an
average volume v in an incompressible matrix, it is easy to show that the volume fraction
of cavities f is such that

_fF
- v (14)

Moreover, the mass per unit of volume is given by

p_1-4
Po 1_fu

(15)

To simplify the notation, p is defined as the relative density obtained by dividing the
density of the damaged material by that of the material in its initial state: the initial value
of p is therefore p, = 1. Equations 14 and 15 yield

b —p'B

v (1= p + pfo)

As aresult of Eq 13 and p = €2,

e |pe O
B [ p(l —p + Pfu)] Dt exp (p(r,) (16)

There is a striking analogy with the equation of Rice and Tracey (Eq 1): it should be
recalled that the exponential form is not a hypothesis in itself but that it flows from Hy-
potheses H1 to H4. Through a new and last application of the principle of simplicity, it is
assumed (Hypothesis H5) that Eq 16 reduces to

a
= Der Rt ¥
el

that is, to the Rice and Tracey equation if D = 3 x 0.283, p = 1, and 0, = 20,./3 =
20,/3 in the nonhardening case. (Note that D = 2 was used in this paper, in agreement
with cavity growth measurements; the Rice and Tracey coefficient 0.283 is recognized to be
too small [4].) Hypothesis HS5 implies

< e

< e

1
1 - fo+ foexp B

p(B) = (17)
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and given that —p'/pB = l/o, Eq 17 vields Eq 3

_ afyexp B
B(B) = 1—fo+ foexp B

A third parameter, the initial volume fraction of cavities f,, is thus added to o, and D. The
use of Eq 17 is optional; in a numerical computation, p can be deduced directly from the
field of displacements.

The model is thus fully defined with the only guidance being systematic selection of the
simplest formulation.

Viscoplastic Case

Again, according to the principle of simplicity, the viscoplastic potential is in the form
Q(Y) = Q(F(Y)), with F(6,P,B) # 0 in the viscoplastic case. As

a0 dQ oF _ dQ

aP  dF aP dF

the other components of X = (&7, p, B) are given by X = paF/aY, exactly as in the plastic
case (Egs 12 and 13), in which also p = &£,

The difference is that F = h(p), instead of F = 0 in the plastic case, where h is the
reciprocal function of dQ}/dF. F = h(p) gives

5= R(p) — () + B@D exp (2] = 0

One interpretation of the viscoplastic model is to handle it numerically like a plastic model,
but with a hardening curve depending on the strain rate

R(p.p) =R(p) + h(p)
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