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Abstract. Restricted to gravity-fed networks, most water network de-
sign models minimize investment costs under a static peak water demand
scenario. In networks equipped with pumping stations, design models
should also account for operation costs incurred by the pump energy
consumption that depends on dynamic demand and tariff. Evaluating
the lifetime operation costs amounts to solve a large-scale non-convex
combinatorial optimization problem for each considered design. In this
paper, we address the pressurized water network design problem with a
joint optimization of the pump investment and operation costs through
a stabilized Benders’ decomposition. To reduce the complexity of the
operational subproblem, we decompose the scheduling horizon in repre-
sentative days, and relax the discrete and non-convex components of the
hydraulic model. We also evaluate the design robustness on stress-day
scenarios and derive feasibility cuts using a dominance argument. Exper-
iments on a typical rural branched water distribution network with one
year of historical data show the accuracy of our approximations and the
significant savings expected from the optimal pump resizing.

Keywords: Pressurized Water Network Design · Stabilized Benders’
Decomposition · Mixed Integer Nonlinear Programming.

1 Introduction

While the lifetime of pipes and water tanks usually reaches 100 years, the mean
lifetime of a pump is closer to 20 years. Operators of water networks must then
periodically proceed to the rehabilitation of pumping stations with the char-
acteristics of the other network assets already fixed. The problem is complex
because, besides the strategical level - which pump combination to install? - it
requires to investigate the operational level - how to operate the installed pumps?
- to evaluate and minimize the lifetime costs over the set of pump combinations.
Moreover, evaluating the minimum operation costs brings into play, together,
dynamic water demand and energy tariff profiles, discrete pump scheduling de-
cisions, non-convex hydraulic laws, and uncertain long-term forecasts. Actually,
solving the operational subproblem, known as pump scheduling problem, deter-
ministically on a daily horizon is already considered challenging (see e.g. [7]).
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Optimization methods dedicated to the design of water distribution networks
have been proposed for more than four decades. A common approach is to com-
bine an evolutionary algorithm with a hydraulic simulator (see e.g. [9,10] and
references therein). The approach deals accurately with the short-term dynamic
of the network operation, but it is inherently a heuristic and provides no perfor-
mance guarantee. Mathematical programming approaches handle the hydraulic
explicitly as non-linear constraints to address the pipe layout design problem
[2,4,12]. They provide guarantee, but neglect the dynamic by evaluating the fea-
sibility of operating the network on a static worst-case water demand scenario.

In this paper, we address the pumping station design problem precisely, with
an optimization approach combining the strengths of both previous strategies.
While the overall approach is generic, the operational level is presented in the
context of the FRD network, a branched network that is described in details
in [3]. The approach is built on a decomposable formulation of the problem in-
cluding the operation scheduling subproblem as a large-scale non-convex mixed-
integer non-linear program with uncertain data. We apply a stabilized Benders’
decomposition [1] to solve the problem and propose different approximations for
the subproblem to reduce its complexity while maintaining some performance
guarantees. First, we decompose the multi-year scheduling horizon in a restricted
set of seasonal representative days. This common assumption in long-term plan-
ning models fits well with the daily periodicity of drinking water distribution,
and allows to separate the scheduling subproblem in independent daily sub-
problems (once a pump configuration is given). As optimizing iteratively each
subproblem would remain too time consuming, we propose to relax the integral-
ity constraints and to convexify the hydraulic constraints. This results in convex
continuous non-linear programs providing under-estimates of the operation costs
and dual information to derive Benders cuts. Second, we handle the long-term
uncertainties by enforcing the robustness of the solution on hypothetical stress
days characterized, e.g., by a high water demand and the outage of one pump. By
disregarding optimality but forcing feasibility on stress days we can, for the class
of networks in consideration, aggregate identical pumps and, therefore, reduce
the size and complexity of the subproblem. Furthermore, we exhibit a dominance
relation between pump combinations that allows to generate multiple feasibility
cuts from one infeasible solution. Our experiments on the FRD network show
the accuracy of our approximations: the impact of the horizon decomposition
is negligible while the continuous convex relaxation induces a deviation of the
optimum lower than 4.3%. Finally, the annual savings (in terms of investment
and operation costs) expected from the rehabilitation are estimated to 32%.

The paper is organized as follows: Section 2 presents a formulation of the
problem. Section 3 describes the stabilized Benders’ decomposition and Section 4
the management of infeasibility under the dominance argument. Computational
results are provided in Section 5 and some conclusions in Section 6.
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2 Optimal design of a pumping station

This section defines our design model, by first describing how the network op-
erates in our application case. This simpler operation model detailed in [3] is a
specialization of standard models to the network characteristics [6].

2.1 Operation of a branched network

The water distribution network FRD [3] can be represented as a directed graph
G = (J, L). The water flows from a source r ∈ J to elevated tanks j ∈ JT ⊆ J
through, successively: fixed speed pumps k ∈ K ⊆ L set in parallel at the
pumping station s ∈ J , directed pipes l ∈ LP ⊆ L connected by junctions
j ∈ JJ ⊆ J , and pressure reducing valves l ∈ LV ⊆ L. The dynamic state of the
system over a given time horizon T is driven by the water demand D ∈ RJT×T+

at the tanks and is governed by complex hydraulic laws of conservation of flow
and pressure through the network. A standard model is defined as

PKT = {(x, q, h) ∈ {0, 1}K×T × RL×T+ × RJ×T+ | (1)− (9)},

with x the on/off state of the pumps, q the flow through the arcs, and h the
head (sum of pressure and elevation in m) at the nodes, and:∑

ij∈L

qijt =
∑
ji∈L

qjit, t ∈ T , j ∈ JJ (1)

∑
ij∈L

qijt = Sj(hjt − hjt−1) +Djt, t ∈ T , j ∈ JT (2)

hj0 = hjT = H0
j , j ∈ JT (3)

Hmin
j ≤ hjt ≤ Hmax

j , t ∈ T , j ∈ JT (4)

hit − hjt ≥ 0, t ∈ T , ij ∈ LV (5)

αmin ≤ hst − hrt ≤ αmax, t ∈ T (6)

Qmin
κk xkt ≤ qkt ≤ Q

max
κk xkt, t ∈ T , k ∈ K (7)

hit − hjt ≥ Φij(qijt), t ∈ T , ij ∈ LP (8)

hst − hrt ≤ Ψκkt(qkt) +M(1− xkt), t ∈ T , k ∈ K. (9)

In this model, the time horizon is discretized T = {1, . . . , T} with a resolution of
typically 1 hr or 2 hrs in which the system is assumed to operate in steady state.
Flows qlt and demands Djt are given in volume (in m3) for the duration of a time
step t ∈ T . Constraints (1) and (2) enforce the conservation of flow at junctions
and tanks. In (2), a tank j ∈ JT is assumed to be a vertical cylinder of area
Sj (in m2). Constraints (3) fix the initial and final volumes and Constraints (4)
the security limits with 0 ≤ Hmin

j ≤ H0
j ≤ Hmax

j (in m3). Constraints (5)
model the pressure reduction at the valves. Constraints (6) enforce bounds 0 <
αmin ≤ αmax on the head increase to limit leaks for instance. Let κk denote the
class of pump k ∈ K. Constraints (7) limit the pump operation range, given
0 < Qmin

κ ≤ Qmax
κ (in m3), and bind flow values and pump activation states.
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Constraints (8) models the head loss due to friction in pipes. For each pipe ij ∈
Lp, the head loss-flow coupling function Φij can be accurately approximated by a
quadratic function Φij(q) = Aijq+Bijq

2 with Aij ≥ 0, Bij ≥ 0. Constraints (9)
synchronize (given a large enough M value) the head increase of each active
pumps. Function Ψκt depends on the manufacture characteristics κ and on the
ageing t of the pump. It can be accurately fitted from operating points as a
quadratic function Ψκt(q) = ακt−βκtq2, with ακt ≥ 0 and βκt ≥ 0. We highlight
that the head-flow coupling constraints (8) and (9) are actually equalities in the
original – thus non-convex – formulation of the pump scheduling problem, but
it is shown in [3] that the optimality gap of this relaxation is small.

Finally, the financial cost of operation plan (x, q, h) is mainly incurred by the
purchase of the electricity consumed by pumping, namely:

CKT (x, q, h) =
∑
t∈T

Ct
∑
k∈K

Γκkt(xkt, qkt), (10)

with Ct ≥ 0 the actualized electricity price on period t and Γκt the power
consumption function for each active pump of class κ and ageing t defined as a
linear fit Γκt(xkt, qkt) = λκtxkt + µκtqkt.

2.2 Robust design and relaxed operation

In the considered water network design problem, only the set K of pumps must
be sized in a way to satisfy the future water demand D and to minimize the
global cost – sum of the actualized investment and operation costs – over a
life span T of typically 20 years. The number of pumps in K is limited by
the capacity N ∈ N∗ of the pumping station. Each pump is selected from a
given set of candidate classes κ ∈ K and acquired new at time t = 0 at a fixed
investment cost Iκ ≥ 0. We assume that the maximal efficiency and the head
increase at constant flow for all pumps decrease from 1% each year, according
to the empirical ageing model of [5]. Under this hypothesis, we assume in the
definition of Φij that ακt = (1 − vt

100 )ακ0 and βκt = (1 − vt
100 )βκ0 for any time

t ∈ T with vt the duration from time 0 to t in years. Also, because the power
consumption can alternatively be formulated as the product of the flow and the
head increase divided by the efficiency, we assume that it does not change in
time, i.e. λκt = λκ and µκt = µκ for t ∈ T in the definition of Γκt.

Assuming that the water demand (Dt)t∈T and the electricity price (Ct)t∈T
are given, the optimal design problem is to find a set K of at most N pumps
of classes in K and an operation plan (x, q, h) ∈ PKT of minimum investment
and operation costs. As the life span extends into years while the operation
model requires a time resolution in minutes or hours, this model is not practical
due to its complexity, its dimension and the stochasticity of the water demand.
To address these issues, we formulate a robust variant of the problem where
the time horizon is decomposed into a given set of regular (resp. peak) days
d ∈ DR (resp. d ∈ DP). Each day d ∈ D = DR ∪ DP is characterized by
water demand and electricity tariff profiles over the daily time horizon T d which
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are representative for a number Ld of days over the life span T . Thanks to
Constraints (3) (which forces the tank’s water level at the end of the day to be
equal to that of the beginning of the day) the subproblem of determining the
minimum cost operation plan (x, q, h) ∈ PKT associated to a pump combination
K is decomposed into independent daily subproblems:

min
(x,q,h)∈PKT

CKT (x, q, h) =
∑
d∈D

Ld min
(xd,qd,hd)∈PK

T d

CKT d(x, q, h). (11)

Because optimizing on PKT d remains challenging, we propose to relax some opera-
tional constraints which are not structural for the long term horizon. We consider
a different relaxation RKT d whether d is a regular or peak day. The purpose of
peak days is to enforce the robustness of the solutions by simulating stress oper-
ation conditions, including a high demand. We check the feasibility of the pump
combinations under these extreme conditions but, if feasible, we neglect the as-
sociated operation costs as these conditions are considered as exceptional. More
specifically, we consider the sum in (11) only over the index set of regular days
DR, and we use the peak days to check feasibility (of the pump configuration),
as detailed in Section 3 below. In such stress days we also ignore the minimum
flow constraints in (7) by setting Qmin

κ = 0. Under these assumptions, all the
pumps in a class can be assumed to operate equally and the size of model RKT d
can be reduced accordingly, by aggregating the variables per pump class and
by relaxing the integrality constraints on the aggregated state variables for each
class κ ∈ K such that ακ0 ≥ αmax.

To allow a quick computation of the operation costs of a pump combination
over the regular days, as well as the use of dual information in the overall solu-
tion algorithm described in the next section, we define RKT d as the continuous
relaxation of PKT d for any regular day d ∈ DR. I.e., the feasible sets PKT d in (11)
are replaced with RKT d .

2.3 Pump investment variables, constraints and costs

As the considered network has only one pumping station, a pump combination
is uniquely determined by the number of pumps of each class it contains. An
alternative representation, with more symmetries but that is better suited to
Benders cut generation, is given by yκn ∈ {0, 1} for κ ∈ K and n ∈ {1, . . . , N}
such that yκn = 1 if and only if the combination has at least n pumps of class
κ. For a fixed ordering of the pumps, each combination corresponds to exactly
one binary vector y such that

∑
κ∈K

N∑
n=1

yκn ≤ N, yκn ≤ yκn−1, for all κ ∈ K and n = 2 . . . , N. (12)

Let Nκ(y) =
∑N
n=1 yκn be the number of pumps of class κ in the combination y.

The investment cost of acquiring Nκ(y) pumps of class κ is IκNκ(y), with given
Iκ ≥ 0. Having defined all the elements related to the variables of investment
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and operation, we are now in position to state the considered formulation for
the robust design optimization problem:

min
y,x,q,h

∑
κ∈KIκNκ(y) +

∑
d∈DR

LdC
K
Td(xd, qd, hd)

s.t. y binary satisfying (12) and xd ≤ y ∀d ∈ DR ∪ DP
(xd, qd, hd) ∈ RKTd ∀d ∈ DR ∪ DP .

(13)

The constraint xd ≤ y means that a pump is operational at day d if the config-
uration y accounts its installation.

3 Benders’ decomposition

Problem (13) has a decomposable structure: we can separate the investment
variables y from the operational ones (x, q, h) to rewrite (13) as

min
y

f(y) s.t. y binary satisfying (12) and c(y) = 0 . (14)

In this formulation, the objective function f is

f(y) =
∑
κ∈K

IκNκ(y) +
∑
d∈DR

Ld


min

xd,qd,hd
CKT d(xd, qd, hd)

s.t. (xd, qd, hd) ∈ RKTd ∀d ∈ DR
xd ≤ y ∀d ∈ DR.

(15)

Peak days are handled by the constraint function c:

c(y) =

{
0 if there exist (xd, qd, hd) ∈ RKTd s.t. xd ≤ y ∀d ∈ DR ∪ DP
∞ otherwise.

In the process of solving (14), both f and c are approximated by cuts.
Benders cuts. Note that function f is convex but nonsmooth. Therefore, opti-
mality cuts for (14) is nothing but linearization of f , computed by making use
of subgradients. Let ỹ be a given combination of pumps. Then a subgradient s̃
of f at ỹ is a vector of same dimension as ỹ constructed from the dual variables
associated to the constraints xd ≤ y, for all d ∈ DR, as described in [1, Lemma
1]. The optimality cut is thus given by f(ỹ) + 〈s̃, · − ỹ〉 and satisfies (due to
convexity of f) f(ỹ) + 〈s̃, y − ỹ〉 ≤ f(y) for all y.
Feasibility cuts. Suppose that ỹ is infeasible for problem (14). In order to ex-
clude such a point from the set of candidate solutions for (14) we consider the
following linear constraint

∑
κ∈K yκNκ(ỹ)+1 ≥ 1, with convention yκN+1 = 0.

3.1 Stabilized cutting-plane algorithm

Let ` be an iteration counter and z` (resp. z`) be the lower (resp. upper) bound
available at iteration ` for the optimal value of (14). We initialize z0 = 0 and
z0 = ∞ in the stabilized Benders’ decomposition of [1] to generate a sequence
{y`} of be the trial points for (14). We split such a sequence according to feasi-
bility of its elements: O` = {ι ∈ {0, . . . , `} : c(yι) = 0} and F` = {0, . . . , `}\O`.
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Note that F` gathers (up to iteration `) the points that have been proved infea-
sible for problem (14). By setting ` = 0, starting with a vector y0 and defining
the incumbent point ŷ0 = y0, our variant of [1, Alg. 4] defines trial points by
iteratively solving the following MILP:

y`+1 ∈


arg min

y
〈 1
2
1− ŷ`, y〉

s.t. y binary satisfying (12)

f(yι) + 〈sι, y − yι〉 ≤ (z` + z`)/2 ∀ι ∈ O`∑
κ∈K yκNκ(yι)+1 ≥ 1 ∀ι ∈ F`.

(16)

If this master program is infeasible, then z`+1 = (z` + z`)/2 is a valid lower
bound for (14). Otherwise, we set z`+1 = z` and check feasibility of z`+1: if it
is infeasible we set F`+1 = F` ∪ {` + 1} (a new feasibility cut is added). On
the other hand, if c(z`+1) = 0 we then update O`+1 = O` ∪ {` + 1} (a new
Benders cut is added), compute f(z`+1) and a subgradient s`+1, and set z`+1 =
min{z`, f(y`+1)}. If z` > f(y`+1) then the algorithm updates the incumbent
point: ŷ`+1 = y`, otherwise it remains unchanged. In any case, the algorithm
updates ` = `+ 1 and repeats this process until (z` − z`)/z` ≤ tol, for a given
tolerance tol > 0. We refer to [1] for further details on the algorithm.

4 Infeasibility, dominance and fault tolerance

In this section, we show how to accelerate the convergence of the solution algo-
rithm by using a dominance relation on the set of combinations to generate more
than one feasibility cut at a time, including in a preprocessing step. To simplify
the presentation, we fairly assume that a combination which is infeasible for a
regular day is also infeasible for a peak day. We finally integrate to the definition
of peak days a model of robustness to pump failures.

4.1 Dominance

By definition, the maximal flow a pump combination y can deliver for a given
head increase α = hs−hr corresponds to activate all Nκ(y) pumps of each class

κ ∈ K with ακ0 > α. It is thus equal to Qy(α) =
∑
κ∈KNκ(y)

√
max(0, ακ0−αβκ

).

We say that a combination y dominates y′, and we note y′ � y, if Qy′ ≤ Qy on
the allowed operation range [αmin, αmax]. The following proposition shows that
all combinations dominated by an infeasible combination are infeasible too.

Proposition 1. For any combinations y and y′ and peak day d ∈ DP , if y′ � y
and y is infeasible for (14), so is y′.

Proof. For any combination y, function Qy is strictly decreasing with the head
increase, then Ay = {(q, α) ∈ R2 | 0 ≤ q ≤ Qy(αmin), αmin ≤ α ≤ Q−1y (q)}
identifies the set of pairs of total flow and head increase which can be operated
by y at any time t (because we relaxed lower bound Qmin

κ on peak days). Then
for any point in Rd(y′) = {(x′, q′, h′) ∈ RKTd s.t. xd ≤ y′ ∀d ∈ DP}, which is built
on a sequence of Td elements of Ay′ ⊆ Ay, there exists another point Rd(y).
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4.2 Generation of feasibility cuts

Suppose that, in the cutting-plane algorithm, a candidate combination y`+1 is
proved to be infeasible on some peak day. Proposition 1 implies that several
feasibility cuts can be generated at the same iteration instead of a single one:
it amounts to search for combinations that are dominated by y`+1. Dominance
clearly defines a partial order relation on the set of combinations. The dominance
of y′ by y can be checked by proving that Qy − Qy′ ≥ 0 at each point of non-
differentiability {αmin, αmax} ∪ {ακ | κ ∈ K}. However, the class of dominated
combinations can reasonably be computed only for small values of |K| or N . We
propose to compute it in a heuristic way by observing that, if pκ denotes the
power of a pump κ at its maximal efficiency then the reference power P (y) =∑
κ∈KNκ(y)pκ of y is likely greater than the reference power of the combinations

it dominates. In our implementation, we first compute and sort the list C of
combinations of at most N pumps by increasing order of reference power. When
y is proved to be infeasible, we iterate on the combinations with lower reference
power, by decreasing order, and check if they are dominated. Each dominated
combination is then used to enlarge the set F` in (16) indexing feasibility cuts.

As a preprocessing step for the algorithm, to accelerate its convergence, we
also propose to initialize F0 by greedily evaluating the list C. We iteratively pick
up a combination y ∈ C of median value P (y) and check the feasibility of the
continuous relaxation of RKT d on peak days d ∈ DP . If y is infeasible, then we
updated F0 as previously. Otherwise, we remove all y′ from C with P (y′) ≥ P (y)
s.t. y � y′ as they are likely feasible too.

4.3 Robustness to a pump outage

Finally, we propose to add another degree of robustness to the design problem
by simulating the inoperability of one pump on peak days (due to possible failure
or maintenance). To that purpose, we redefine that a combination y is feasible
for (14) if all variations of y defined by setting off one pump (of any type) on
peak days are feasible. This new assumption only impacts (and speeds up) the
algorithms described above to initialize and update the index set F` of feasibility
cuts.

5 Numerical assessments on a real-life instance

In this section, we consider the rural drinking water distribution network FRD
investigated in [3]. The resulting design problem (13) were constructed with data
from the historical demand profiles of the year 2013 (see [3] for more details). We
assume that all the 6 existing pumps should be replaced by at most N = 6 new
ones selected in the KSB manufacturer catalog [8]. We have preselected a set K
of 19 classes of pumps compatible with the network allowed range of pressure
[αmin = 91, αmax = 140]. For each class κ ∈ K, we interpolated curves Ψκ and Γκ

from the catalog data and estimated the investment cost Iκ = 4 400
(
pκ
74.6

)0.67
+
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19 300
(
pκ
52

)0.77
following ([11], Table 9-50). Considering a planning horizon of

T =20 years, we built a set DR of 12 regular days, each representative of a week
day or a week-end in six 2-months periods (January-February, March-April,...)

of any year. For each regular day d ∈ DR, we define Ld = L0
d

∑20
l=1(1 + τ)1−l

with L0
d the number of days represented by d in 2013 and τ = 5% the discount

rate. Demand and tariff profiles Dd and Cd for a regular day d are computed in
average over the L0

d represented days of 2013. The unique peak day is built from
the day in 2013 with the highest instantaneous demand and by initializing the
tanks at their minimum level Hmin. We fix the time resolution (duration of the
time steps) to 2 hours for regular days and to 4 hours for peak days.

The computations were performed on a Xeon E5-2650V4 2.2GHz with 254
GB RAM. The algorithms were implemented in Python (with tol = 10−3), and
the master and slave programs solved with Gurobi 7.0.2.

5.1 Numerical results

The preprocessing algorithm identified 1,902 infeasible combinations of at most
5 pumps (among 42,504) in 275 seconds, 83% of the time being to compare com-
binations. This resulted in an initial set F0 of 20,757 infeasible combinations of
at most 6 pumps, which represent 96% of F` at the last iteration ` of the sta-
bilized cutting-plane algorithm. This suggests that the preprocessing algorithm
separates feasible and infeasible combinations with good accuracy.

The cutting-plane algorithm ran in 732 seconds and 37 iterations (28 infeasi-
ble candidates). In average, the time of one iteration can be roughly decomposed
in 12 seconds for solving the master program, 6 seconds for the twelve regular
slave programs (which could be reduced by parallelization), and 3 seconds for
the peak slave program and to compute the dominated infeasible combinations.

To evaluate the quality of our approximations, we computed the non-relaxed
operation cost of the optimal combination y∗ when optimizing on the original
operation scheduling model PKT (using the heuristic in [3]) on the 12 regular
days of 2013 and on the 365 days of year 2013. By applying the discount rate,
we get the operation costs over the 20 years: 460,388 euros in the former case
and 460,247 in the latter case. This negligible deviation suggests that the chosen
number of representative days is enough. By adding the investment costs on the
12-day case, we get a lifetime cost of 598,748 euros. Compared to the final lower
bound z = 570, 898, it gives an optimality gap of 4.3% which confirms that the
continuous relaxation Rd offers a good estimate of the operation cost.

Finally, we compared the operation of network FRD before and after resizing
the pumping station according to the optimal combination y∗. First, the number
of pumps is reduced from 6 to 5 pumps and the average reference power from 127
to 66 kW. The purchase cost of the new combination is then half the present
value of the installed combination. Second, the operation costs for year 2013,
when estimated with PKT , are reduced by 24.3%, a reduction that is mainly
driven by a better usage of the pumps (+18.9% of the average efficiency) which
proves the better adequation to the demand.
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6 Conclusion

In this paper, we tackled the water network design problem in the context of
networks equipped with pumping stations, where the operation costs must be es-
timated dynamically in addition to the investment costs. We formulated different
approximations to estimate the operation costs to be embedded in a stabilized
Benders’ decomposition approach. We also ensured a certain robustness of the
solutions to stress operation conditions and derived dominance arguments to ac-
celerate the cutting-plane algorithm. Experimented on a realistic instance, the
approximations turned to be accurate and the algorithm fast. While some fea-
tures of our implementation are specific to the FRD network, and more generally
to a class of branched network defined in [3], the method can be generalized to a
variety of water networks after identifying an accurate continuous relaxation for
the operation problem. The potential higher complexity and larger optimality
gap should however be evaluated in practice.
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