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Oxygen data assimilation for estimating micro-organism communities’
parameters in river systems

Shuaitao Wang®*, Nicolas Flipo®, Thomas Romary?*

“Geosciences and Geoengineering Department, MINES ParisTech, PSL University, 35 Rue Saint-Honoré 77300 Fontainebleau, France

Abstract

The coupling of high frequency data of water quality with physically based models of river systems is of great interest
for the management of urban socio-ecosystems. One approach to exploit high frequency data is data assimilation
which has received an increasing attention in the field of hydrology, but not for water quality modeling so far. We
present here a first implementation of a particle filtering algorithm into a community-centered hydro-biogeochemical
model to assimilate high frequency dissolved oxygen data and to estimate metabolism parameters in the Seine River
system. The procedure is designed based on the results of a former sensitivity analysis of the model (Wang et al.,
2018) that allows for the identification of the twelve most sensible parameters all over the year. Those parameters
are both physical and related to micro-organisms (reaeration coefficient, photosynthetic parameters, growth rates, res-
piration rates and optimal temperature). The performances of the approach are assessed on a synthetic case study
that mimics 66 km of the Seine River. Virtual dissolved oxygen data are generated using time varying parameters.
This paper aims at retrieving the predefined parameters by assimilating those data. The simulated dissolved oxygen
concentrations match the reference concentrations. The identification of the parameters depends on the hydrological
and trophic contexts and more surprisingly on the thermal state of the river. The physical, bacterial and phytoplank-
tonic parameters can be retrieved properly, leading to the differentiation of two successive algal blooms by comparing
the estimated posterior distribution of the optimal temperature for phytoplankton growth. Finally, photosynthetic
parameters’ distributions following circadian cycles during algal blooms are discussed.

Keywords: Data assimilation, Dissolved oxygen, Parameter estimation, Particle filter, PRoSE-PA

1. Introduction

The coupling of high frequency data of water quality with physically based model of river systems is of great inter-

est for the management of urban socio-ecosystems. One approach to exploit high frequency data is data assimilation
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which combines observations and short-range forecasts to estimate the distribution of the true state of a process (Wikle
and Berliner, 2007). Assimilating high frequency data allows for the identification of the multiple sources of model
uncertainty relative to parameters, model structure, forcing data (e.g. temperature, wind speed and solar radiation)
and observations (Evensen, 2003), which limit the validation and application of water quality models (Beven, 1989;
Polus et al., 2011).

A lot of data assimilation techniques exist in literature such as the variational methods (Sasaki, 1955, 1958), the
Kalman filter (KF, (Kalman, 1960)), the extended Kalman filter (EKF, (Beck, 1987)), the ensemble Kalman filter
(EnKF, (Evensen, 1994)) and the particle filter (PF, (Doucet et al., 2001)). A review of these methods can be found
in the literature (Wikle and Berliner, 2007; Cappe et al., 2007; Sarkkd, 2013). The variational methods minimizing
a cost function have been widely used in numerical weather prediction (Courtier et al., 1994, 1998; Gauthier et al.,
2007; Kleist and Ide, 2015; Yucel et al., 2015). The major drawbacks of variational methods are the numerical
implementation complexity and the computational cost. The KF handles only linear models with Gaussian errors,
which are not consistent with the hydrologic and water quality models.

To extend to nonlinear models, the EKF uses the linearized formula tangent to the forward model, which is an
approximation and would be very costly to implement for high-dimensional systems (Evensen, 2003). The EnKF
uses Monte Carlo samples to approximate the forecast distribution and then applies linear update formulas to obtain
the posterior distribution (Evensen, 2003), while the particle filter based methods estimate the forecast and posterior
distributions using discrete probability densities (Arulampalam et al., 2002) obtained via Bayes’ theorem (Bayes,
1763). Since the EnKF and particle filter resolve the two major drawbacks related to the use of EKF and handle highly
nonlinear models, the EnKF and particle filter based methods have become the most commonly used sequential data
assimilation techniques in hydrologic modeling for state-parameter estimation (Moradkhani et al., 2005; Weerts and
El Serafy, 2006; Andreadis et al., 2007; Salamon and Feyen, 2009; Plaza et al., 2012; DeChant and Moradkhani,
2012; Vrugt et al., 2013; Shi et al., 2014; Abbaszadeh et al., 2018).

In biogeochemical oceanography, the efficiency of the ensemble-based Kalman filters has been assessed on ocean
models for ocean biogeochemical state and parameter estimation (Simon and Bertino, 2012; Simon et al., 2012;
Gharamti et al., 2017; Yu et al., 2018). Due to the lack of data, the difficulties in representing complex hydro-
ecosystems and the computational cost, there are still relatively few applications about the state-parameter estimation
by assimilating high-frequency dissolved oxygen (DO) concentrations in river systems. Pastres et al. (2003) have
applied the EKF to update three parameters of a simple DO-chlorophyll model in the lagoon of Venice. Mao et al.
(2009) used EKF to forecast algal blooms and dissolved oxygen dynamics in a marine ecosystem. The recent studies

focus particularly on forecasting algal bloom dynamics using EnKF in river system (Kim et al., 2014) or in lakes
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(Huang et al., 2013; Page et al., 2018). Xue et al. (2012) applied also EnKF in the Massachusetts Bay to design the
optimal monitoring sites for DO measurements.

However, as stated by Wikle and Berliner (2007, p. 10-11), “We assume that the forecast distibution can be char-
acterized by its first two moments (or, equivalently, that it is Gaussian with mean and (estimated) variance/covariance
matrix). ... However, in nonlinear cases, since Gaussianity cannot hold for all time, the EnKF must yield biased sam-
ples and estimates, even for unlimited sample sizes”. The recent investigations concluded also that the assumption of
a Gaussian error structure for the forecast distribution may not be realistic for hydrologic systems and phytoplankton
dynamics and the authors suggested testing the particle filter based methods to overcome this problem (Plaza et al.,
2012; Pasetto et al., 2012; DeChant and Moradkhani, 2012; Huang et al., 2013). The feasibility of Bayesian inference
with a Particle Markov Chain Monte Carlo algorithm is tested on a simple predator-prey model in ecological research
(Kattwinkel and Reichert, 2017).

In this paper, we present the PrRoSE-PA model, which consists in a first implementation of a particle filtering
algorithm into the community-centered hydro-biogeochemical model ProSE (Even et al., 1998, 2007b; Flipo et al.,
2004; Vilmin et al., 2015b) in order to assimilate 15 min-DO data and estimate metabolisms’ parameters in the Seine
River system. The procedure is designed from the results of a sensitivity analysis of the biogeochemical module,
C-RIVE , of the ProSE model that identified the twelve most sensible parameters of the model (Wang et al., 2018).
Those parameters are both physical (water re-aeration by fluvial navigation) and physiological (for instance growth
rate of heterotrophic bacteria and photosynthetic parameters of phytoplankton). The performances of PRoSE-PA are
assessed on a synthetic case study that mimics 66 km of the Seine River and generates virtual “observation” data of
DO. The objectives of this study are to retrieve the predefined parameters used to generate the “observation” data and
to distinguish two successive algal blooms by identifying different physiological properties.

The manuscript is organized as follows. The section 2 presents the PRoSE model and the study area, followed
by the ProSE-PA approach including the mathematical formulations of the particle filter, the resampling algorithm
as well as the full numerical algorithm. The considered parameters, the “observation” data and the input data of
ProSE model are described in section 2.3. The numerical settings and the computational cost are given in section 3.1.
Then, we evaluate the simulated DO concentrations by four statistical criteria (section 3.2) and show the identification
of metabolisms’ parameters in frame of state classification (section 3.3). The real time parameter identification is
discussed in section 4.1, followed by the identifiability of two successive algal blooms by comparing the different
physiological properties. The photosynthetic parameters’ distributions following circadian cycles are described in
section 4.3. The sensitivity of PRoSE-PA performances to the observation error is discussed in the section 4.4. To

finish, a brief conclusion is given in section 5.
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2. Material and methods

2.1. Synthetic case study

2.1.1. The ProOSE model

The ProSE model (Even et al., 1998, 2007b; Flipo et al., 2004; Vilmin et al., 2015b), couples three libraries (a hy-
drodynamic library, a transport library and a biogeochemical library), that simulate together the hydro-biogeochemical
functioning of a river system. The hydraulic module solves the 1D shallow water equations with a finite volume
scheme. The transport module simulates the advection and dispersion of both particulate and dissolved substances,
including also water re-oxygenation by overflowing over hydraulic works. The biogeochemical library is based
on the RIVE conceptual model which is a community-centered model (Billen et al., 1994; Garnier et al., 1995)
(https://www.fire.upmec.fr/rive). The cycles of carbon, nutrients and dissolved oxygen are simulated in both water col-
umn and sediment layer. The compound exchanges between water column and benthic layers have been successively
developed (Even et al., 2004, 2007a; Flipo et al., 2004, 2007; Vilmin et al., 2015b). The ProSE model has been well
validated and largely applied in the Seine River system (Even et al., 1998, 2004, 2007a; Polus et al., 2011; Raimonet
et al., 2015; Vilmin et al., 2015a,b, 2016, 2018).

2.1.2. Study area

The study area is located downstream Paris city and consists of 66 km of the Seine River (Fig. 1). The bathymetry
data of the channel is extracted from the full 220 km Seine model used in recent studies (Vilmin et al., 2016, 2018).
This area is highly impacted by human activities including two Waste Water Treatment Plants (WWTPs, Seine Aval
and Seine Centre) and two major Combined Sewer Overflows (CSOs). The Seine Aval (SAV) is the largest WWTP of
Europe, which treats the effluents of over 6.5 million equivalent inhabitants (Rocher et al., 2011). During rain events,
CSOs discharge large amount of suspended solids, organic matters and nutrients into the Seine River (Even et al.,

2007b). Assimilating DO is therefore of great interest for the decision makers in this area.

2.2. Data assimilation framework using particle filtering, the PRoSE-PA approach

2.2.1. State-space model

To begin with, we represent the PRoSE model as a state-space model (Kalman, 1960). A state-space model uses
inputs, state variables, outputs to describe the evolution of a system over time. In our case, it uses three equations (Eq.
(1), (2), (3)). Let y represents the state variable vector of the system in terms of physics (DO concentrations in this
study) and x be the vector of model parameters. The state variable and the model parameters are both modelled as

random variables Y, X characterized by their probability distribution functions (pdf). x and y denote the realizations



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

of random variables X, Y. The observation vector y* is a realization of the random variable Y*. The state-space model
explains the temporal evolution of the system by assuming that it behaves as a Markov process (Markov, 1906). This

means that the values at t depend on the values at # — 1 only:

Xy = X1 + 1] (H
Vi = M(Yi—1, i, X)) + v, (2)
Y =h(y) + € 3)

The transition of model parameter x from ¢ — 1 to ¢ is described by a Gaussian perturbation (7,, Eq. (1)). In the
above equations, M is the forward model (in our case PRoSE) and # is the observation operator relating the forecasted
state variable (y;) to the observation (y;). In other words, & denotes the selection of model cells where observations
are available. y,_; stands for the posterior state variable at previous time step (¢ — 1) or equivalently for the prior state
variable at current time step (¢). The symbols y, and X, represent respectively the prior forcing data (e.g. temperature,
wind speed and solar radiation) and the prior model parameters at time step ¢. The variables v, and €, characterize the
unknown model and measurement errors respectively. The PRoSE model aims at conserving the mass balance. The
model does it with accuracy, the relative errors being in the order 10~> or 107, This is far below observation errors.
Therefore, no model errors are considered (v, = 0) in our case.

Note that the nomenclature we use here is not canonical. In dynamical system literature, the parameters would
have been called the “states” because they are the hidden dynamic variables that govern the system’s behaviour. In
forward modelling and especially hydrology, the state variables designate the variable that are computed by the model,
while the parameters represents the time varying functional inputs of the numerical model. We consider the latter as
the reader is more likely to be accustomed to this definition. Please note that, with this definition, the input fluxes at

the boundary of the model are not called parameters, but boundary conditions.

2.2.2. Bayesian inference

We seek to estimate the posterior pdf of both the random variable Y and the parameter X conditionally to the
observations Y*. To simplify the writing, we define the state vector Z = [YT,X™1" and its realizations z = [y",x"]".
Therefore, our goal can be reformulated in finding the conditional pdf of Z knowing y* noted fz(z|ly*). Through
Bayes’ theorem (Bayes, 1763), the posterior pdf fz(z|y*) can be deduced from the product of the prior pdf (fz(z)) and

the likelihood distribution ( fy-(y*|z)), up to a normalizing constant independent from Z:
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The prior pdf fz(z) gives the prior knowledge on z before the measurements are taken. The likelihood fy-(y*|z)

describes the pdf of the observation data given the model predictions.

2.2.3. Sequential form

The formulation (4) does not relate to time. To introduce a sequential form for data assimilation, we define the
temporal trajectories of the random variables Z and Y*, Zy,, = {Zy,--- ,Z,} and Y7,, = {Y],--- , Y[}, discretized over
time by sequences of state (Z;, Y;,i = 1,--- , 1), as well as their realizations z,, y},,. The posterior pdf of the trajectory
7. given observation yj. writes fz, (21.]y].,)-

Next, we can write the posterior pdf fz,,(z1,]y].,) under a recursive form (Arulampalam et al., 2002; Doucet
et al., 2001; Wikle and Berliner, 2007; Sarkki, 2013) owing to the Markovian nature of the process. We simplify the

notations rewriting a pdf fz(z) into f(z).

f(zlcz|YT;t) o f(ynzl:ts YT;Z_1)f(ZI:t|YT;,_1) (5)
= f(Yf|Zz)f(Zt|Z1:t—l7YT;,_1)f(lez—l |y’{:,_1) (6)
= [/ 12)f @z ) f (@117 1) (N

where we use first the Bayes’ theorem to get equation (5), then the Bayes’ theorem and the Markov property
for equation (6) and the Markov property to obtain the sequential relation (7). We propagate z, using the evolution
equations (1) and (2) in order to model the distribution f(zz,-;). Note in case of a deterministic formulation ((v;, 7,) =
(0,0) in equations (1) and (2)), f(z,z,-) is a Dirac measure. Consequently, we can access the posterior pdf f(z.y}.,)

of the trajectory Z;., by updating it at each time step. This will be done through the use of sampling techniques.

2.2.4. The particle filter

The particle filter aims at approximating the posterior pdf f(z.,|y].,) of the trajectory Z;,, knowing y7., by a set of
particles (simulations) associated with weights (w,). It is generally impossible to sample from f(zi,[y],) directly. To
address this problem, sequential importance sampling has been suggested (Doucet et al., 2000; Liu, 2001). For the

ease of reading, the principle of the importance sampling and the definition of the importance weights are detailed



161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

in Appendix B. We give here the weight update formula for each particle directly, which is a consequence of the

sequential decomposition of the posterior of the trajectory obtained in (Eq. (7)) .

Wi = fyjlz)w!_, (8)
I ©)
>

where f(y;|z!) denotes the likelihood function, which quantifies how y? is likely to be observed given z! at time ¢.
' and ‘”i_1 stand for the posterior and prior weights at time ¢. In other words, the posterior weight at time 7 — 1 serves
as a prior weight at time . We also define the normalized importance weight, @', associated with the particle i.

In practice, it is usually not necessary to estimate the posterior pdf f(zi,ly].,) of the trajectory Z;,, knowing y7.,.
We are interested here in the marginal distribution of f(zy.]y],,), called filtering distribution f(z,]y].,). It represents the
distribution of the state variables knowing all the past observations as well as the current one. In this paper, we note

the filtering posterior pdf at time ¢ as f(z/y].,) which can be approximated as,

N
fabyi) ~ > @i, (10)
i=1

where (-) is a Dirac delta function and N denotes the number of particles. That is the filtering distribution is
approximated by a discrete distribution, whose probability mass function is defined by the normalized importance
weights and charges the particles.

If we assume that the observation error is Gaussian, then the likelihood probability of each particle can be calcu-

lated using the pdf of the multivariate normal distribution:

- 1 1 ; ,
INLY;lZ) = —75 In(m - 5 In(Z) = 307 = hy) =7 ] = b)) (1)
iy Liy; 1)
WilZ) = o
T = S

where m is the number of observation sites and X is the error covariance matrix of the observations.

2.2.5. Resampling algorithm
A common problem when using particle filtering is the degeneracy phenomena. This occurs when almost all

the particles have zero or very small importance weights. Only a few particles have significant importance weights.



179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

Therefore, the discrete probability densities cannot represent the posterior pdf of a given state adequately. A resam-
pling procedure reduces the degeneracy effect. The basic idea of the resampling is to discard particles that have a
small weight and to duplicate particles with a large weight. Generally, it is not necessary to perform resampling at
every time step, but only when necessary. A way to monitor the need of resampling is to estimate the “effective”
number of particles by the effective sample size (N,ss). The N,rr cannot be evaluated exactly but it can be estimated

it by (Kong et al., 1994; Doucet et al., 2000):

— 1

Nypr = ———— (12)
TSN @y

When N,y is below a threshold (Ny,.s = « - N) predefined by the user, resampling is performed. After the
resampling step, all weights are reset to 1/N. As the particles having a important weight may be copied many times,
which results in sample impoverishment problem. To maintain the diversity of the ensemble, a random perturbation

is added to the parameters’ value after the resampling step (eq. (13)).

Xi, =X 7, ~ NQ©, (s - ®)) (13)

i i i
1+1 t,resampling + nt

where s is a percent perturbation predefined by the user (0.1 in this study) and @ denotes the parameter range.
The resampling technique used in this work is referred to as systematic resampling. The procedure of systematic

resampling is thoroughly described in the literature (Kitagawa, 1996; Moradkhani et al., 2005; Li et al., 2015).

2.2.6. Numerical algorithm
The coupling of the particle filtering algorithm with PrRoSE model is called PrRoSE-PA. PA stands for Parallel

computing and data Assimilation. A full description of the PRoSE-PA approach is given below (Fig. 2).

2.3. Description of the synthetic case study
2.3.1. Parameters considered and virtual “observation” data

Twelve parameters of the PRoSE model were identified in different hydrological and trophic contexts in a previous
work (Wang et al., 2018). Those parameters are both physical and physiological (Table 1).

Five monitoring stations are located in the study area (Suresnes, Chatou, Bougival, Sartrouville, and Andresy, from
upstream to downstream respectively. Fig. 1). The assimilation period is the year 2011 when algal blooms occurred

in March and July in the Seine River (Vilmin et al., 2016). The two successive algal blooms are characterized by

8
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different physiological properties, especially the optimal temperature for growth of phytoplankton (Vilmin, 2014). A
high-frequency DO (dissolved oxygen) dataset (y"/, every 15 minutes), which corresponds to the frequency of the
real measurement, is generated using predefined parameters (Table 1). Three phytoplanktonic parameters are modified
manually at day 139 in order to represent the two different algal blooms (Piax pp, Rinpp and Top; pp, see Tab. 1 for
parameter definition). In this case study, the “observation” data are obtained adding a Gaussian error to the reference
dataset with a mean of zero and a standard deviation of 0.01 x y"*/ (y; = ylmf +¢€, € ~ N(0,(0.01x y,mf ). A
standard deviation of 0.01 x y"¢/ ensures that the 95% observation errors are less than 0.02 x y"*f, which is coherent
with the sensors used in the Seine River system (Garnier et al., 2019). The reference dataset and predefined parameters
are assumed to be true and are assessed via data assimilation. In this study, no model errors are considered (v, = 0,
see Eq. (2)). The major aims of this work are to retrieve the reference DO concentrations and the dominant predefined

parameters identified by Wang et al. (2018) over time.

2.3.2. Input data for PROSE model

Apart from hydraulic (time varying river discharge and CSOs data), geometric data (river channels), the PRoSE model
also requires time varying concentrations of the biogeochemical variables (micro-organism biomass, dissolved oxy-
gen, nutrients, organic matters, suspended solids) entering the system and the meteorological data (solar irradiance,
water temperature and wind speed). These data are used as boundary conditions of the PRoSE model. The quantifica-
tion of uncertainties on boundary conditions is an ambitious topic that extent far beyond the scope of this paper and

will require the study of real systems. Here we only investigate uncertainties on parameters.

2.3.3. Qualitative description of the simulation period: state classification

According to the former sensitivity analysis of the biogeochemical module, C-RIVE , of the PRoSE model (Wang
et al., 2018), we can classify the year 2011 into different periods (Fig. 3). The polygons at the bottom show this clas-
sification (Fig. 3). The water temperature increases from black to white (color gradient) and the line shaded polygons
represent algal bloom periods (Cepy, > 10 ug/L). Wang et al. (2018) concluded that at low temperatures (Interbloom T
< 6 °C, black polygons), the river system is controlled by the reaeration process (Kqyi;). At moderate and high water
temperatures, the maximum growth rate of bacteria (1. 1) is most sensitive to variation of DO concentrations when
no algal bloom occurs (Interbloom T > 6 °C, gray polygons). Once algal bloom occurs, phytoplanktonic parameters
related to respiration (R, p,) and to photosynthesis (app, Ppaxpp €tc.) are dominant. A supplementary sensitivity
analysis by Sobol method (Sobol, 1993) during algal bloom shows that the optimal temperature (7 ,) plays an
important role on the growth of phytoplankton and that the sensitivity of Ry, ,, (respiration of maintenance) depends

on the water temperature (Fig. A.1). When the water temperature exceeds 20 °C, the total sensitivity index of R, ,,

9
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decreases dramatically (Fig. A.1).

2.4. Numerical setting and computational cost

According to a test of the number of particles (not shown here), we select 500 particles in this work which is
sufficient to i) match the observed oxygen concentrations and ii) identify the posterior pdfs of sensible parameters.
The OpenMP Application Programming Interface (API) is implemented in the code to simulate the 500 particles
in parallel. For a 1 year-simulation period (365 days) at a 15-min time step, the computation takes 1.13 days with
20 processors (Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz). A resampling threshold of @ = 0.3 is chosen,

corresponding to a minimum effective sample size of 150.

3. Results: Oxygen simulation and parameter identification

3.1. Effective sample size for resampling procedure

Although the effective sample size (N,yy) reduce fast after two months, synchronously with the start of the first
algal bloom (day 64), the parameter perturbation allows the restoration of particle diversity (Fig. 4, N.sr > 450
after resampling), which indicates a proper exploration of the parameter space by the algorithm. This is achieved by
selecting a configuration of the Gaussian random walk (Pearson, 1905) through its standard deviation. After several

trials (not shown here), the standard deviation of the random walk has been set to 0.1 times the parameters’ range (eq.

(13)).

3.2. Almost perfect DO simulation with PROSE-PA

Figure 5 shows simulated DO concentrations at three downstream monitoring stations. Those stations are selected
because they are less sensitive to input boundary conditions and therefore permit to evaluate the conceptual structure
of the code and the conceptualization of processes. The model performances are evaluated by four statistical criteria
(RMSE, Root-Mean-Square-Error; MAE, Maximum Absolute Error; NSE, Nash-Sutcliffe Efficiency; R, Correlation
coefficient).

The ensemble weighted average DO concentrations at all stations match the reference DO concentrations. Two
algal blooms are well retrieved. The first starts at 64th day and the second around 171st day (Fig. 5). The maximum
RMSE and MAE values between ensemble weighted mean and reference DO data are obtained at the Suresnes station
with an error of 0.035 mgO,/L and an error of 0.321 mgO, /L respectively (Tab. 2). Furthermore, all NSEs and cor-
relation coefficients (R) are close to 1, which signifies a perfect match of simulated DO concentration to the reference

DO data. In addition, the 95 percentile confidence intervals are very narrow, which means a perfect simulation also.

10
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3.3. Parameter identification in the frame of the state classification

In this section, the identification of physical, bacterial and phytoplanktonic parameters is shown in plots displaying
normalised weights over time (Fig. 6,7,8) for each parameter of interest. The daily normalised weights over time
permits to represent the evolution of the posterior pdf of each parameter. Each parameter range is divided in 20
intervals. The sum of daily normalised weights in each interval which approximates the posterior pdf are shown by a

image plot. The dashed black line represents the predefined value of parameter used to generate “observation” data.

3.3.1. Physical parameters

Two physical parameters are assimilated in this paper, the light extinction coefficient for pure water (1,,4s.) and
the reaeration coefficient related to the navigation (K.,). Albeit light extinction by clear water (17,,4.,) is a physical
parameter, it is an important control for phytoplankton growth (Wang et al., 2018). It is not very well determined
most of the time, except during algal blooms when the posterior pdfs focus around the reference value of 0.32 m™!
(see the line shaded polygons in Fig. 6A). K., controls the reaeration process and is the most sensitive parameter
to variation of DO in winter when the water temperature is below 6 °C (Wang et al., 2018). In this period (see the
second black polygon in Fig.6B), the particle filter achieves a very fine identification of its pdf. Seeing other periods

of the year, its effect remains negligible and logically it remains unidentified.

3.3.2. Bacterial parameters

In the previous sensitivity analysis (Wang et al., 2018), the maximum growth rate of bacteria (i np) 1S the
first ranked parameter out of algal bloom with a moderate water temperature (T > 6 °C) and the bacterial growth
yield (Y},) is identified as the second sensitive parameter for inter algal bloom periods (both low and moderate water
temperatures). Umqxnp can be retrieved well for several periods. These periods match globally the gray polygons which
correspond to inter algal bloom periods with a water temperature T > 6 °C (Fig. 7). Y, is slightly overestimated during
the simulation, except for the algal blooms periods (see the line shaded polygons in Fig. 7). The optimal temperature
for bacterial growth (7. 15) can be determined at the beginning of simulation. However, the maximal mortality rate

of bacteria (morty) spreads uniformly over the parameter range during the data assimilation period.

3.3.3. Phytoplanktonic parameters

It can be observed that the respiration of maintenance (R ,,), the photosynthetic capacity (@), the light extinc-
tion coefficient by algal sell-shading (17:x4,pp), and the optimal temperature for growth of phytoplankton (7, ) are
well estimated during the first algal bloom (see the gray line shaded polygon in Fig 8), while the maximum photosyn-

thesis rate (P,qyx,pp) is overestimated (Fig. 8). Similarly, almost all the phytoplanktonic parameters can be retrieved
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during the second algal bloom (see the clear line shaded polygons in Fig. 8), but not for R,, ,, and Chla/C,,. The
ratio of chlorophyll a to carbon (Chla/C,),) is unidentified during the simulation, because Chla/C,, has little effect
on the variation of DO concentrations (Wang et al., 2018). The particle filter captures the change of phytoplanktonic
properties after 139 day for P4y pp and T,p pp. During algal blooms, five among seven parameters including 7yarer
can be retrieved. Even though the two other parameters are not well estimated, we obtain satisfying simulated DO
concentrations during algal blooms (Fig. 5). Although app, Nwarer> Nehtapp and Top pp, are always identified by the
algorithm during blooms, this is not the case for R, ,, and Py, Which are supposed to be important during algal

bloom (Wang et al., 2018). This is further discussed in the next section.

4. Discussion

4.1. Specifications for real time parameter identification

As shown by the results, the identification of the different parameters is not always ensured during the data as-
similation period. This result can be explained by the parameters’ sensitivity in contrasted hydrological and trophic
contexts. One parameter that is dominant on DO concentration can be well estimated, while the other insensitive

parameters have a relatively large uncertainty. In this section, we discussed the real time parameter identification.

4.1.1. Parameters identified between algal blooms

Out of algal blooms, the identified parameters are fiyqx pp and Kiqyig, Which is coherent with the previous sensitivity
analysis (Wang et al., 2018). At low temperatures (T < 6 °C), bacterial and phytoplanktonic activities are limited,
the reaeration (Kjq.;g) controls DO concentration within water column. The river system is governed by physical
processes. The daily posterior pdfs of K, at low temperature period (day 21-38) are shown (Fig. 9A). Although
the pdfs of K,ai, from day 21 to day 28 have more dispersion than those for day 29-38, their modes are centred on
the reference value (Fig. 9A). However, the water temperature is below 6 °C at the beginning of the simulation (days
0-6), K,avig is not very well estimated (see the first black polygon in Fig. 6B). This can be explained by the fact that
the prior pdf of K, is uniform at the start of the simulation and this period is too short.

When the water temperature increases (T > 6 °C), the heterotrophic bacteria develops and degrades organic
matters. .y pp becomes the most important parameter governing the DO concentration in river system (Wang et al.,
2018). The identification of p,,,, 1 in those periods can be expected (see the gray polygons in Fig. 7). The pdfs of
Hmaxqp are displayed for day 45-62 when the water temperature increases (Fig. 9B). It can be clearly seen that the
modes of the pdfs of pi,,,, 1, move towards the reference value (Fig. 9B). The particle filter captures the change from

physical control (K,;,) to bacterial control (taxup)-
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Next, the mortality of phytoplankton at the end of algal blooms supplies organic matters for bacterial growth.
Hmaxpp 18 thus well estimated after algal blooms (see the gray polygons day 91-140 and day 280-300 in Fig. 7). This
indicates that the algorithm adapts the evolution of the regime of river system from autotroph to heterotroph. However,
HMmaxp 18 not well estimated for day 300-325, even if this period corresponds to inter algal blooms. The correlation
between the water temperature and the DO concentration in this period (Fig . 3) signifies that the DO concentration
is controlled by water temperature and then colsed to saturation. The reaeration and micro-organism activities are not

important in this period. Therefore, no parameter can be identified in this period.

4.1.2. Parameters identified during algal blooms

The maximum photosynthesis rate (Pyuqy,pp) is third ranked parameter during algal blooms in the sensitivity anal-
ysis (Wang et al., 2018). However, P,y ,p is overestimated with a stable posterior pdf during the first algal bloom
(see line shaded polygon day 64-90 in Fig. 8). The particles with Py, close to 0.2 h™! (predefined value) are
under weighted. That means the compensation of P, p, With the other parameters exist. The parameter interaction
of Py pp has been shown by the difference between the total sensitivity index and the first order sensitivity index
(Wang et al., 2018). Nonetheless, the DO concentrations have been well estimated.

The former sensitivity analysis which used almost constant water temperatures didn’t highlight the sensitivity of
Topipp- The supplementary result shows that the sensitivity of T, ,, depends on the water temperature (Fig. A.1).
Therefore, the water temperature is a crucial factor for algal blooms when T, ,, is defined. This is the reason why
Top1,pp can be identified before algal blooms, but not after algal blooms (Fig. 8).

Contrarily to the first algal bloom, the identification of R,, ,, fails for the second algal bloom (Fig. 8). The
supplementary sensitivity analysis shows that when the water temperature exceeds 20 °C, the total sensitivity index
of R,, ,, reduces dramatically (Fig. A.1). The water temperatures are over 21 °C during the second bloom (Fig. 3).
Therefore, R, p, 1s insensitive during the second algal bloom and remains unidentified. The other identified parameters
match the sensitivity analysis (&pp, Dwarer> Mchia,pp)-

In conclusion, the identification of the parameters depends on not only the hydrological and trophic contexts but

also on the thermal state of the river system. The detailed identification of the parameters is resumed in figure 10.

4.2. Possibility to identify different phytoplanktonic communities

In this paper, we define two different phytoplanktonic properties to distinguish blooms in March and in July (Ry,, pp,
Piaxpp and T,y pp). The particle filter detects well the change of phytoplanktonic properties (Fig. 8), especially the
optimal temperature for the growth of phytoplankton (7, ,,). The posterior pdfs of T, , are stable during the

two algal blooms (Fig. 11). It is therefore possible to differentiate phytoplanktonic communities in real time by
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comparing the posterior distributions of 7', ,,. The different optimal temperatures that have been used for modeling
the phytoplanktonic communities during spring and summer are the ones determined in the Loire and Seine rivers

(Descy et al., 2012; Garnier et al., 1995; Vilmin, 2014).

4.3. Circadian rhythm

At night, the photosynthetic parameters are absolutely insensitive and thus should remain unidentified. Therefore,
a circadian rhythm (day and night) can be expected for the photosynthetic parameters. To study the circadian rhythm
of photosynthetic parameters, the posterior pdfs of Ppay p, @pp and T, pp, are displayed every 3 hours during days
184-186 (Fig. 12). It can be clearly noticed that the posterior pdfs of the three parameters have more dispersion at
night (00:00-6:00) than those during the day (9:00-18:00). Their modes don’t match the reference values at night,
while the three parameters are well estimated during the day (Fig. 12). The ProSE-PA approach retrieves well the

circadian rhythm of the photosynthetic parameters’ sensitivity.

4.4. Performances’ sensitivity to the observation error

The proof of concept of the particle filter has been achieved assuming a relative error on observations of 1 %. In
this section, we assess the impact of the relative error on both ProSe-PA ability to simulate oxygen concentrations
and to identify parameter posterior pdfs. To this aim, various relative observation errors are tested from 1% to 10%.
The Kling-Gupta Efficiencies (KGE) (Gupta et al., 2009; Kling et al., 2012) are calculated to evaluate the model
performances. KGE is based on the decomposition of the mean squared error and NSE performance criteria (Gupta
et al., 2009). KGEs range from -Inf to 1. Essentially, the closer to 1, the more accurate the model is.

The results show that the model performance decreases slightly with the increase of the observation relative error.
Nevertheless, PRoSE-PA retrieves in average the reference DO concentrations for all observation relative errors tested.
KGEs are always larger than 0.96 (not shown here) whatever the relative error. The identifiability of the bacterial
parameters (Umaxnp> Yrp and T,y pp) and the reaeration coefficient related to navigation (Kayig) is not ensured when
the observation relative error exceeds 5% while PRoSE-PA is able to capture phytoplanktonic properties for all tested
relative errors (1%-10%), except for the ratio of chlorophyll a to carbon (Chla/C,,) which has little influence on the

variation of DO concentrations (Wang et al., 2018).

5. Conclusions

In this work, we present a first implementation of particle filter into a hydro-biogeochemical model for metabolism’s
parameter estimation. The assimilation of a 15-min “observation” DO data is realized in the Seine River system on a

synthetic case study.
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e It can be concluded that the particle filter is an efficient method for the biogeochemical data assimilation and

for the metabolism’s parameter estimation in urban river systems.

e The ProSE-PA approach is capable to retrieve perfectly the reference DO concentrations at all stations.

o The identification of the metabolism parameters depends on the hydrological an trophic conetxts and more

surprisingly on the thermal state of the river system.

e The data assimilation method adapts to the trophic state’s change of the Seine River system and the circadian

cycle of photosynthetic parameters is well captured by the PRoSE-PA approach.

e Itis possible to distinguish phytoplanktonic species by identifying the different physiological properties via data

assimilation.

e The ProSE-PA model is operational and transferable to waste water manager for assessing the impact of their
practices now. However, it is necessary to quantify input uncertainties (forcing data, reject water of WWTPs

and CSOs etc.), which are not considered in this paper.

Software availability

A virtual machine including the ProSe-PA(.30 executable and a tutorial based on the synthetic dataset will be
accessible online. If one wants to access the source code of the PRoSE-PA model, please contact Dr. Nicolas Flipo.

The software license is currently under discussion.
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Fig. 1: The description of study area and monitoring sites. Full Seine model is shown at upper-right corner; Monitoring stations from upstream to
downstream: 1. Suresnes, 2. Chatou, 3. Bougival, 4. Sartrouville, 5. Andresy.
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Fig. 2: The flowchart of ProSE-PA approach. The state z’ denotes ith particle or a realization of random variable Z = [YT,XT]T. y’ and x’ signify
model state and parameter set of particle i. Q; and Z; correspond to the model error covariance matrix and the observation error covariance matrix
respectively. In this work, no model errors are considered, v; = 0.
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402 List of tables

Table 1: Reference parameters considered in data assimilation (Parameter range from Wang et al. (2018))

Parameters  Description Range Reference Reference Unit
March July
Physical parameters
Mwater Light extinction coefficient [0.2, 0.8] 0.32 0.32 [m~!]
for pure water
Koavig Reaeration coefficient related [0, 0.05] 0.025 0.025 [m.h1]
to the navigation
Bacterial parameters
Himax,hb Maximum growth rate of [0.01,0.13] 0.04 0.04 [h™1
bacteria
morty, Maximum mortality rate of [0.01, 0.08] 0.02 0.02 [h™1]
bacteria
Topi b Optimal temperature for bac- [10, 35] 25 25 [°C]
terial growth
Yip Bacterial growth yield [0.03, 0.5] 0.25 0.25 [-1
Phytoplanktonic parameters
@pp Photosynthetic capacity [0.0003, 0.0018]  0.0012 0.0012 [m?.s.uE~1.h™1]
Nehla,pp Light extinction coefficient [0.006, 0.054] 0.02 0.02 [L.ugchla™!.m™']
by algal self-shading
Chla/C,, Ratio of chlorophyll @ to car-  [50, 7.69] 28.57 28.57 [ugchla.mgC~!]
bon
Prax.pp Maximum  photosynthesis  [0.09, 0.546] 0.2 0.4 [h™1]
rate
Ry pp Respiration of maintenance [0.001, 0.021] 0.002 0.01 [h™1]
Topipp Optimal  temperature for [10, 37] 13 23 [°C]

growth of phytoplankton
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Table 2: Statistical criteria of the weighted average DO concentrations of 500 particles/simulations at five monitoring sites

Stations RMSE NSE MAE r

Suresnes 0.0345 0.9995 0.3209 0.9998
Chatou 0.0173 0.9999 0.1347 0.9999
Bougival 0.0192 0.9998 0.1627 0.9999
Sartrouville 0.0201 0.9998 0.1765 0.9999
Andresy 0.0163 0.9998 0.1350 0.9999

RMSE: Root-Mean-Square-Error
NSE: Nash-Sutcliffe Efficiency
MAE: Maximum Absolute Error
r: Correlation coeflicient

Table 3: Thresholds of the relative observation error for the parameter identifiability (1%-10%)

Parameters  Thresholds Parameters  Thresholds Parameters  Thresholds
Ry pp 10% (T <20 °C)  Nater 10% Y <7.5%
Prax.pp 10% Chla/C,, Not stable morty, Not stable
Upp 10% Topi.pp 10% Topinb < 5%
Nchla,pp 10% Hmax,hb <5% Knavig <5%

10%: The parameters are always identified for the relative observation errors tested.
See the table 1 for the parameters’ definition and units.

Appendix A. Sobol sensitivity analysis of C-RIVE module during algal bloom at different temperatures

The sensitivity analysis of C-RIVE model during algal blooms is realized every two degrees from 2 °C to 26
°C. The results show that the optimal temperature for the growth of phytoplankton (7, ,,) is the most influential
parameter at low temperatures (< 6 °C). When the water temperature exceeds 20 °C, the importance of the respiration
of maintenance (R, ,,) reduces drastically. For more detailed information about the sensitivity analysis of C-RIVE

model, one can consult Wang et al. (2018).

Appendix B. Importance sampling and definition of the importance weights in particle filtering

We suppose here that we want to simulate a random variable U which may have a complex distribution. The
importance sampling method uses an instrumental distribution called the importance distribution 7 (-) from which we

know how to draw samples (Sérkki, 2013). The importance sampling relies on the following formula:

f fo(udu = f [fU(u)]ﬂU(u)du (B.1)

my(w)

where mry(u) is a proposal pdf for the random variable U from which we can draw samples and fy(u) is the posterior
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Fig. A.1: The evolution of the total sensitivity indices (normalised to 100%) with temperature for Bloom condition (From bottom to top:
Toptpps NMwater» C/Chlapp, Puaxpp, ®pp, Rimpp). See Table 1 for parameter definition. For more detailed information about sensitivity analy-
sis, one can consult Wang et al. (2018).

pdf of given state U from which we cannot directly or efficiently draw samples. The equation (B.1) transforms the

Sum)

nu(u)]‘ We can perform Monte Carlo approximation to estimate

expectation of U into the expectation of the term [u

the expectation of g(U), denoted E(g(U)), for any function g:

(u)
E(g(U) = f (6w 2™ |7yt (B.2)
my(w)
N .
1 i\ Ju(a')
¥y ; g(u )ﬂU(ui)
i 1 fU(ui)
W = = .
N my(u)
where w' (i = 1,---, N) is ith sample (particle) drawn from the importance distribution 7y(u) and ' denotes the

weight associated with ith sample (particle). With particular choices of g, we can hence retrieve the expectation of U,
its variance, quantiles, etc.
We can use importance sampling to address the problem of sampling directly from the posterior pdf f(z1.y].,) of

the trajectory Zy.,. Let the importance distribution, 7(z1,|y}.,), from equation (7) we can compute importance weights,
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_ f(zidlyy,) o« F 20 f @z ) f(Z1-1lyy )

= - - (B.3)
”(Zl:rlym) ”(Zl:rlyk,)
Then, assuming the importance distribution 7(zy./|y}.,) to be Markovian, that is
1(zilyy,) = 7@dzi-1, Y1.)7(Z1-1 1YY o,) (B.4)

(2|21, Y7 )T(21:-1 |YT;1_1),

then equation (B.3) becomes,

w, o« f(YTIZr)f(ZzIZ*H)f(let—1*Iy‘f;t_1) (B.5)
7T(Z,|Zt,1 5 yz )ﬂ'(zlzt—l |y1:,_1)
Filz) f(zilze-1)
X W
”(Zz|zt—1,Y?)

In other words, we derive an update formula for the importance weights in the same form as the update formula

for the posterior pdf ((7)). If we can draw N samples (particles) from the importance distribution n(zy7.,),

z ~n(zly;,) i=1-.N (B.6)

a weight update formula for each particle can be written as follows,

A *1z8) f(Zi|Z! A
. Sy @)
n(zlz,_,y;)

'
AP Wy

t Z(IJ;

where we define the normalized importance weight (&!) associated with the particle i. Normalizing the weights
allows to evacuate the problem of the normalizing constant in the Bayesian representation of the posterior ((5)).
Equation (B.7) shows that we only need to store the state z, at time 7. In addition, it is usually not necessary to

estimate the full pdf f(z;,|y},) in practice. In this work, we are interested in the marginal distribution f(z,[y].,) at time
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t, called filtering distribution. The filtering posterior pdf f(zy]. ) at time ¢ can be approximated as,

N

f@lyy,) = Z&»ié(zz—ZD (B.8)
i=1

where (-) is a Dirac delta function.
The performance of the above algorithm depends on the quality of the importance distribution 7(-). Typically, the

optimal importance distribution is (Doucet et al., 2001; Siarkka, 2013),

(Z:z,-1, Y?) = f(zz|zt—1»y;) (B.9)

In practice, however we generally do not know the distribution f(z|z,;,y;) and we rather propagate z, using the
evolution equations (1) and (2), which terms to draw samples from f(z;|z,—;). In that case, the equations (B.5) and

(B.7) simplifies into

o, < fy/lz)w (B.10)
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