Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Article dans une revue

Fast macula detection and application to retinal image quality assessment

Abstract : In this article, we present a segmentation algorithm for assessing retinal image quality with respect to the visibility of the macular region. An image is considered of acceptable quality if the macular region is clearly visible and entirely in the field of view. Additionally, for acceptable images, the method is able to locate the fovea with a maximal error of 0.34 mm. The algorithm is based on a lightweight fully-convolutional network, several thousand times smaller than state-of-the-art networks investigated so far in preliminary studies. We obtain near-human performance for assessing macula visibility and fovea localization. The presented method can easily be embedded in tabletop or handheld retinographs, decreasing the number of ungradable images, saving both patient and physician time. It is an important step towards automatic screening of retinal pathologies, including diabetic retinopathy, which is a major global healthcare issue.
Liste complète des métadonnées
Contributeur : Accord Elsevier CCSD Connectez-vous pour contacter le contributeur
Soumis le : mercredi 20 juillet 2022 - 14:40:47
Dernière modification le : samedi 22 octobre 2022 - 05:11:32
Archivage à long terme le : : vendredi 21 octobre 2022 - 20:21:28


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License



Robin Alais, Petr Dokládal, Ali Erginay, Bruno Figliuzzi, Etienne Decencière. Fast macula detection and application to retinal image quality assessment. Biomedical Signal Processing and Control, 2020, 55, pp.101567. ⟨10.1016/j.bspc.2019.101567⟩. ⟨hal-02428814⟩



Consultations de la notice


Téléchargements de fichiers