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Highlights

• A real-time algorithm for assessing retinal image quality is proposed.

• The neural network used is thousands of times smaller than state-of-the-art.

• The algorithm is able to accurately locate the fovea at no extra cost.

• Performance on a clinical database is similar to human one.

• The method can be used to save both patient and physician time.
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Fast Macula Detection And Application to Retinal Image Quality Assessment
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Abstract

In this article, we present a segmentation algorithm for assessing retinal image quality with respect to the visibility of the
macular region. An image is considered of acceptable quality if the macular region is clearly visible and entirely in the
field of view. Additionally, for acceptable images, the method is able to locate the fovea with a maximal error of 0.34 mm.
The algorithm is based on a lightweight fully-convolutional network, several thousand times smaller than state-of-the-art
networks investigated so far in preliminary studies. We obtain near-human performance for assessing macula visibility
and fovea localization. The presented method can easily be embedded in tabletop or handheld retinographs, decreasing
the number of ungradable images, saving both patient and physician time. It is an important step towards automatic
screening of retinal pathologies, including diabetic retinopathy, which is a major global healthcare issue.

Keywords: Image quality assessment, Convolutional neural networks, Retinal imaging, Macula Detection

1. Introduction

1.1. Problem Presentation

It is estimated that there were 415 million people with
diabetes in 2015, and this number is expected to reach
642 million by 2040 [1]. A common complication of di-
abetes is diabetic retinopathy (DR), which is one of the
main causes of blindness and visual loss [2, 3]. Due to the
heterogeneity of protocols between different epidemiology
studies, it is hard to give a precise prevalence of DR; how-
ever, the percentage of diabetic patients found with DR in
recent studies is relatively stable and ranges from 21.9%
to 36.8% [4].

DR is detectable and treatable, but regular clinical ex-
amination of all patients diagnosed with diabetes is in-
feasible in practice; in many developing countries, there
is a significant lack of ophthalmologists, and in developed
countries, the number of people aged 60+ is growing at
twice the rate of the profession [5].

In most clinically significant cases, DR is detectable on
eye fundus photographs. Telemedicine networks [6, 7, 8, 9]
have been created in various countries in order to perform
mass screening; international and local guidelines recom-
mend one funduscopic examination per year for diabetic
patients [10, 8]. Photographs can be taken by technicians
in hospitals, specific screening centers, pharmacies or even
prisons equipped with non-mydriatic cameras. In recent
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years, portable retinographs have been developed, which
allow for even more massive screening. Photographs are
then sent to ophthalmologists, who grade them and in-
dicate the course of action to be followed. Both patient
and practician time can be saved this way, provided that
images are of good enough quality.

Due to the increasing amount of data, in conjunction
with the limited number of ophthalmologists, computer
retinal image understanding is of utmost interest. The
literature concerning eye fundus image processing is abun-
dant (a non-exhaustive review can be found in [11]), in-
cluding many segmentation methods to extract anatomical
structures such as the optic disk, the macula or the vas-
cular network, or pathological structures [12, 13, 14, 15,
16, 17], as well as automatic predictions of DR severity
[18, 19, 20].

Image quality estimation is a necessary preliminary
step to these tasks, since it would make little sense apply-
ing an automatic diagnosis algorithm to images too noisy,
blurred or not contrasted enough. Most publicly available
datasets, like the Kaggle Diabetic Retinopathy dataset or
the Messidor database [21], contain only gradable images,
and in [13], it is clearly mentioned that for building a lo-
cal database, ”acceptable image quality, as judged by the
screening program ophthalmologists, was a selection crite-
rion”.

In the context of a telemedicine network, the diagnosis
is performed by a human expert, but the photographs are
taken at a different time and location, by operators whose
skill and level of experience can vary. A significant portion
of images - around 10% for the OPHDIAT network [8] - are
deemed uninterpretable by ophthalmologists. This could
be prevented by automatically estimating the quality at
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acquisition time, sending a warning to the operator if the
photograph should be re-taken.

For a diagnosis to be made, an essential requirement
is that the region of the macula must be clearly visible.
In the present work, we focus on this task and present a
lightweight CNN architecture capable of evaluating if the
macula is 1) clearly visible 2) entirely within the field of
view. In addition, our algorithm is able to accurately lo-
cate the macula if both conditions are met. This position
can be used as well to check if a central image is correctly
centered on the macula, or as part of an automated diag-
nosis algorithm, where the distance between lesions and
the macula is an important information.

1.2. Related Work

So far, proposed methods for locating the macula either
require images to be of sufficient quality [13], or attempt at
providing a location based on contextual information like
the optic disk and vascular network, even if the macula
itself is not visible in the image [14, 15]. The originality
of our approach lies in the fact that we use real clinical
data, including very low-quality images; we automatically
assess image quality, and we deliberately aim at detecting
the macular region only if its visibility is sufficient.

The earliest attempts at defining a score for eye fundus
image quality relied on properties of intensity histograms
[22, 23]. Image structure clustering, introduced in [24],
applies a bank of filters in order to perform unsupervised
segmentation into several clusters roughly corresponding
to anatomical structures of the retina, such as optic disk,
vessels or retinal background. In this article, authors sum-
marize a retinal photograph as a 20-dimensional vector
composed of the histogram of the image structure clusters
(5 bins), along with the three histograms of each color
plane (5 bins each); good quality images are then sep-
arated from bad quality images by means of a Support
Vector Machine. A similar approach was used in [25], al-
though for images centered on the optic nerve of only 22.5◦

field of view. The authors also used a Support Vector Ma-
chine as their final classifiers, but they use Haralick [26]
and sharpness features.

Other features have been proposed, such as the density
of visible blood vessels, either in the whole image [27, 28] or
near the macula [29]. Measures of clarity [30] and blurring
[31] have also been defined. Finally, some methods com-
bine both general image features and retina-specific ones,
making use of vessel density, histogram, textural, and local
sharpness [32, 33, 34].

In recent years, convolutional neural networks have
been proven very efficient on difficult computer vision tasks,
notably winning the ImageNet Large Scale Visual Recogni-
tion Competition (ILSVRC) 2012 competition [35]. CNNs
have then been applied to various tasks, including segmen-
tation of retinal images [36, 37], glaucoma and DR grading
[38, 39, 40].

In this context, estimating retinal image quality with
convolutional neural networks is an interesting research di-

rection. In [41], a convolutional network is trained in order
to discriminate gradable images from artificial ungradable
images obtained by adding noise to the original images of
the DRISHTI dataset [42], which contains 101 acquisitions
centered on the optic disk, with a 30◦ field of view, all im-
ages being taken with the pupils dilated. In [43], the same
authors have experimented with both a ’shallow’ network
(the total number of weights cannot be calculated, since
the number of neurons in the two fully-connected layers is
not given, but the weights in the convolutional layers alone
exceed 1 million) trained from scratch, and AlexNet [35]
fine-tuned on a dataset consisting in 908 ungradable and
944 gradable non-mydriatic images. On a larger dataset
(9653 ungradable retinal images and 11347 gradable im-
ages), they also evaluated the possibility of using a hybrid
method combining saliency maps and CNNs [44]. Finally,
[45] compare the performance of fine-tuning four CNN ar-
chitectures - AlexNet [35], GoogLeNet [46], VGG-16 [47]
and ResNet-50 - on a 3000-image subset of the Kaggle
database. These preliminary studies report that large net-
works are hard to train, and must deal with overfitting
issues, due to the huge amount of parameters. In an at-
tempt to overcome this problem, data augmentation is ex-
tensively used, to the point where so much distortion is in-
troduced that most of the training data is not constituted
of real or even realistic examples. An example of this is
generating artificial new data by applying large rotations
(up to 210◦ !) to images; the resulting images are unre-
alistic, and it makes the network more or less rotational
invariant, which is not a desirable feature for analyzing eye
fundus images.

Another drawback of very large networks is their inte-
gration in embedded systems. Several million weights can
constitute a significant fraction of the available memory:
233MB for AlexNet, 528MB for VGGNet for weights and
biases alone, and the prediction times on embedded CPUs
can be on the order of a second [48].

In this work, we propose a lightweight solution, with
only 8329 parameters, and a reduced number of convolu-
tions to be performed, meaning low power consumption
as well. A comparison of memory requirements and com-
putation times on embedded systems between our algo-
rithm and other classic convolutional networks is given in
Table 1. Our algorithm, including disk access and post-
processing, was benchmarked on a Raspberry Pi; timings
for the other networks come from [48] and were obtained
on a more powerful 1.9GHz quad-core ARM Cortex-A57
64bit CPU (NVIDIA TX1). For a given task, we should
expect it to be performed faster on the TX1 than on the
Raspberry Pi. Despite this, our algorithm is the fastest,
being more than three times as fast as ResNet, and more
than 17 times as fast as VGGNet. It is also the lightest by
far, requiring only 98kB for storing the network’s weights.
We have also benchmarked a modified version of the seg-
mentation network U-Net [49], whose performance for our
task is evaluated in section 4.
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Network Time (ms) Time (ms) Weights (MB)
TX1 (CPU) Rasp.Pi

AlexNet 893 233
VGGNet 2809 528

GoogLeNet 638 26
ResNet 567 97

Us 161 0.1
U-Net 92 0.6

Table 1: Computation times and memory use of various convolu-
tional networks on embedded systems. The first four networks have
been benchmarked in [48] on a NVIDIA Jetson TX1. Our network
and our implementation of U-Net were benchmarked on a Raspberry
Pi; it should be expected that they would have run faster on the TX1.

2. Database

We extracted 6098 eye fundus images from the e-ophtha
database [50]. This database has itself been extracted
from the OPHDIAT telemedicine network for DR screen-
ing. These images are either central (centered on the
macula), or nasal (centered on the optic disk). Differ-
ent retinographs were used for the acquisitions, with res-
olutions ranging from 1440x960 to 3504x2336 pixels. Two
different readers, independently from each other, indicated
whether or not the macula was both entirely within the
field of view, and clearly visible, meaning that the fovea
and the small vessels around the avascular region can be
seen. When that was the case, the fovea’s position (x-
and y- coordinates) was labeled. When there was a dis-
agreement on the macula’s visibility, a decision was made
on which annotation to use. Out of the 6098 images that
were considered, the macula was deemed visible by both
readers on 3142. The remaining images correspond either
to bad quality central images or to nasal images where the
macula is at least partly outside the field of view (FOV).
Sample images are shown in Fig. 1.

3. Methodology

3.1. Image Preprocessing

Briefly put, the idea is to train a network to segment
the macular region: with an ideal algorithm, if the segmen-
tation is unsuccessful, it means that no macula is visible;
if the segmentation succeeds, it means that image quality
in the macular region was sufficient, and we immediately
get fovea localization as a byproduct.

To train the network, we used the green channel, which
was cropped, zero-padded in order to retain a square frame
when necessary, and resized to a 128x128 image (see Fig.
2). This can seem aggressive, and some details might be
lost, but approaches for assessing the severity of DR use
networks with inputs as small as 512x512 [18], even though
the task is much more complex and can rely on the pres-
ence of small structures like microaneurysms. A previous
work for localizing both macula and optic disk in good-
quality images used as input the green channel resized to

(a) (b)

(c) (d)

Figure 1: Sample images from the e-ophtha dataset: the macula is
considered clearly visible and entirely within the FOV in both (a)
and (b). It is in the center of image (c) but the quality is insufficient
for grading, and it is partly outside the FOV in (d), which is a good
quality nasal image.

256x256 [37]. The aim of this work is a bit different, since
we are less interested in predicting a precise location - al-
though our algorithm never predicts a location outside the
macula (see Sec. 4.2) - but rather in estimating the quality
of the macular region. A 128x128 resolution is sufficient
to visually assess the visibility of the macula, and means
that smaller networks can be used, easier to train and less
costly to run in an embedded framework, in real time.

Where the macula was visible, we used the mean of the
two annotations as reference for the fovea’s position; in
128x128 resolution, the average distance between readers
was 1.25 pixels. We considered the macula to be about 20
pixels wide, and we used as ground truth a disk of ones of
radius 10 pixels, the rest of the image being set to zero.
When the macula was not visible because of low image
quality or because it was at least in part outside the FOV
(Fig. 1c and 1d), the ground truth was an image of zeros.

The only pre-processing consisted in dividing the (8-
bit) images by 255, in order to get images valued between
0 and 1. No contrast enhancement or filtering was ap-
plied, since we wanted to evaluate the quality and mac-
ula visibility of raw images. Data augmentation was used
by applying vertical symmetries (transforming a right eye
into a left eye or the other way around), but no horizon-
tal symmetries or rotations were used, to avoid creating
unrealistic training data.

The dataset was split in three parts: a training set,
used for learning network parameters, a validation set,
used to estimate network performance during learning and
setting some hyperparameters, and a test set, exclusively
used to assess the method’s performance. Images corre-
sponding to the same patient are necessarily in the same
set in order to avoid any evaluation bias. The number of
images in each set is given in Table 2.

Additionally, in order to further estimate the general-
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Training Validation Test All
Visible 2193 639 310 3142

Not visible 2056 596 304 2956
Total 4249 1235 624 6098

Table 2: Number of images in the training, validation and test sets.

izability of localization performance, we will use the ARIA
Database C 8, for which fovea localization ground truth is
available, as an additional test set.

(a)

(b) (c)

Figure 2: The green channel of the original color image (a) has been
cropped around the region of interest, zero-padded on top and bot-
tom so as not to introduce distortion, then resized to 128x128 (b).
Image (c) is the ground truth used to train our convolutional net-
works.

3.2. Network architecture

We trained a fully-convolutional network consisting only
of 3x3 convolutional layers (each followed by a rectified lin-
ear unit) piled up, with all convolutional layers having 8
channels. We used zero-padding at every step, so that the
output image is the same size as the input one. A similar
architecture has been shown to provide good results for
cell nucleus segmentation [51].

The number of convolutional layers we pile up deter-
mines the receptive field of each pixel in the output image:
that is, if there are L layers in the network (including the
output layer), the value of one pixel in the output image
depends on the values in a 2L+1 by 2L+1 square centered

at this position in the input image. We tried different val-
ues of L, ranging from 10 to 20; the best validation loss
was achieved for networks with L = 16. The receptive
field is then 33x33 pixels. When centered on a pixel at the
edge of the macula, it contains the fovea and most - but
not all - of the ground truth macular region.

This network has very few parameters: each channel
of the first layer is defined by a 3x3 convolutional kernel
and a bias term. In the following layers, each channel is
defined by a 3x3x8 convolutional kernel and an extra bias
term (73 parameters). Finally, the output layer is defined
by a 3x3x8 convolutional kernel and a bias term. The
network has a total 8329 parameters, which is extremely
few (in comparison, AlexNet has 60 million parameters).

The network was initialized with truncated normal dis-
tributions with standard deviation σ = 0.1 for the convolu-
tion weights and zeros for the biases. The objective func-
tion we minimized was the L2 distance between images.
The gradient was estimated at each step on a mini-batch
of 8 images, using the RMSProp optimizer [52]. The net-
work was trained for 4000 epochs.

3.3. Network Output Post-processing

Given an input 128x128 gray-scale image, the network
outputs a 128x128 nonnegative array. A rectified linear
unit is used in the output layer. We did also experiment
using a sigmoid output activation, along with logistic loss,
but it turned out that network convergence was harder to
reach, and the obtained performance was lower.

Based on an output image, we have to answer the ques-
tion ”Is the macula visible in the original image ?”. Since
the ground truth image for a positive instance is a bi-
nary disk of radius 10, this is equivalent to answering the
(ill-defined) question ”Does the output image look like a
binary disk of radius 10 ?”.

The strategy we implemented goes as follows: the out-
put image is thresholded above a value t in order to ob-
tain a binary image. Then, only connected components
of area greater than a value A are kept. If there is ex-
actly one component remaining, we assume that the mac-
ula is visible, and the fovea can be located as the centroid
of this component. If there is zero component of large
enough area, we assume that the macula is not visible. If
there are two or more components with area greater than
A, this means that the algorithm is behaving oddly, and
since our application is sensitivity-driven (it is important
to correctly identify ungradable images), as a measure of
precaution, we also consider that the macula is not clearly
visible. Examples of network outputs and illustration of
our post-processing are given in figure 3.

4. Results

4.1. Macula Visibility Estimation

4.1.1. Parameter Influence

There are two parameters to be set: the threshold t
and minimum area A. In order to pick the best values

4
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: (a-b): input images, (c-d): corresponding network outputs,
(e-f): thresholded network outputs (t = 0.9), (g-h): connected com-
ponents of area greater than A = 200 pixels. These images belong
to the test set and were chosen specifically because more than one
component remained after thresholding, but this actually happens
in only about 5% cases.

for these parameters, we looked at specificity (the fraction
of images where the macula was annotated as visible cor-
rectly classified), sensitivity (the fraction of images where
nothing was annotated classified as such) and overall ac-
curacy on the validation set. Doing so on the training set
could lead to overfitting, while doing so on the test set
would give a biased estimation of the algorithm’s ability
to generalize.

The specificity, sensitivity and accuracy curves are shown
in Fig. 4. Unsurprisingly, the higher the threshold, the
higher the sensitivity, but even taking t = 0.5 and A = 1
(i.e. demanding there is only one connected component
after thresholding), almost 97% images where macula visi-
bility was considered insufficient by human readers are cor-
rectly classified. The main observation is that for A ≤ 200,
the choice of parameters actually has very little influence
on the results. For the three considered thresholds, there
is a steep fall when setting A above a certain value: in or-
der to maximize sensitivity while keeping a certain margin
to this critical value, we chose to set t = 0.9 and A = 200,
which leads to a reasonable tradeoff, with 99% sensitiv-
ity, 95.3% specificity and 97.1% overall accuracy. We use
those parameters in the following.

4.1.2. Test Set Results

Accuracy on the test set reaches 96.4%. In comparison,
the agreement ratio between the two annotators before a
consensus was made was only of 89.9%. Sensitivity reaches
98.7%; in other words, out of 304 images where the mac-
ula was not annotated in the ground truth, the algorithm
makes 4 mistakes. The images on which these errors are
made can be seen in Fig. 5. As can be seen on the figure,
these correspond, if not to annotating errors, at least to
borderline cases. In two out of the four images, the small
vessels around the macula can even be distinguished.

Specificity reaches 94.2%: out of 310 images where the
macula was annotated as clearly visible, the algorithm cor-
rectly classifies 292.

4.1.3. Performance on Pathological Images

Although we obtain a very good performance on our
test set in terms of accuracy, sensitivity and specificity,
it is interesting to look more specifically at images where
automatic macula detection would be expected to be hard.
Figure 6 shows examples of network outputs for images
where lesions are present. Although there is one case of
unsuccessful detection, we can see that the network is able
to detect the macula even when there are hemorrhages or
exudates in the macular zone.

4.1.4. U-Net Comparison

U-Net [49] is a popular network for segmentation and
has been successfully used in a variety of applications. It
makes perfect sense trying to apply it to our problem, how-
ever we have found it to slightly underperform compared
to our network, in terms of both specificity and sensitiv-
ity. Several configurations of U-Net were tested. The best

5
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(a) Algorithm specificity on the validation dataset plotted
against A for different threshold values.

(b) Algorithm sensitivity on the validation dataset plotted
against A for different threshold values.

(c) Algorithm accuracy on the validation dataset plotted
against A for different threshold values.

Figure 4: Influence of the threshold t and the minimum area A on
the classification performance.

Figure 5: The four test set images for which the algorithm incorrectly
predicts that the zone of the macula is of good quality.

one had 4 filters in the initial convolutional layer, and a
gaussian noise layer at the end. On the test set, this net-
work incorrectly predicts that the macula is not visible on
19 images, which is similar to our network (18 false nega-
tives). The main drawback is that it has more than twice
as many false positives (9 versus 4). It also has many more
parameters (122,953) than our network. As for fovea local-
ization, which is detailed in the next section, the average
error for U-Net is 1.22 pixels, which is again more than
our network’s error (0.95 pixel).

4.2. Fovea Localization Results

Although the main task our algorithm addresses is as-
sessing the quality of the macula region, it can also be used
to segment the macula, or localize the fovea, as mentioned
in section 3.3. In this section, we evaluate the performance
of our algorithm for localizing the fovea, on the database
we extracted from the e-ophtha database and on the ARIA
database.

4.2.1. e-ophtha Database

As mentioned in the previous section, if we use t = 0.9
and A = 200, our algorithm predicts 292 images where the
macula is visible, out of the 310 images where it was an-
notated. By lowering either parameter or defining another
strategy, we could predict a location for the macula for
more images, but it would make little sense in this context
trying to localize it if we are not even confident it is in the
FOV. In order to remain consistent, we leave the param-
eters unchanged and present localization results only on
the images identified by our algorithm.

As previously mentioned in section 3.3, we use the cen-
troid of the (only) connected component of the thresholded
output image as our estimation for fovea location. The

6
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Network outputs for pathological images. In the four cases,
there are hemorrhages and/or exudates in the macular region. De-
spite this, the network provides a reasonable output in the first three
cases (the areas after thresholding at t = 0.9 are respectively 274, 91
and 250). The last case is an example of unsuccessful detection.

Figure 7: Histogram of distances to ground truth on the test base
(in pixels after resizing to 128x128).

mean of the two annotators’ positions is used as ground
truth. The histogram of distances to the ground truth is
shown in Fig. 7.

The average test error is 0.95 pixel, which is less than
the average distance between the annotators. One pixel in
128x128 resolution represents 0.075 mm. The largest test
error is 4.85 pixels, or 0.33 mm; it has to be noted that,
since the macula was considered to be 10 pixels in radius,
all of the predicted values lie within the macula.

4.2.2. ARIA Database C

The ARIA database C contains 61 central eye fundus
images with corresponding ground truth annotations for
optic disk and fovea. Our network, with the same post-
processing parameters as before, predicts a position for 46
of them, with a mean error of 1.4 pixel (0.1 mm) and a
maximum error of 6 pixels (0.44 mm). The average error
is again comparable to the average distance between two
human readers (1.25 pixels, as mentioned in Sec. 2) and
the maximum error is about half the macula’s radius.

The 15 remaining images correspond to poor quality
acquisitions; some examples can be seen in Fig. 8. Al-
though it is quite easy for an experimented human observer
to approximately locate the fovea region, the macular re-
gions of these images are clearly of limited to no interest
for an ophthalmologist.

5. Discussion

Guidelines for teleophthalmology recommend taking two
photographs per eye, one centered on the macula, the other
centered on the optic disk. A mandatory condition for a
couple of images to be gradable by an ophthalmologist is
that the macula is clearly visible in at least one of the two
images. In practice, a significant proportion of examina-
tions - about 10% for the OPHDIAT network - does not
meet this required quality criterion. The algorithm de-
tailed in the present work could significantly reduce the
fraction of ungradable central images. Since the algorithm
also provides the location of the macula, it can also be
used in order to assert that a central image is indeed well

7
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Figure 8: Examples of images from the ARIA database for which the
network does not return a fovea position.

centered around it. It can also be used as part of an auto-
mated diagnosis algorithm, for which macula segmentation
is often a crucial step [53].

Eye fundus photographs so far are often made by health-
care professionals, using tabletop non-mydriatic cameras;
however, recent years have seen the emergence of portable,
handheld retinographs, cheaper and allowing for screening
in remote locations. These generally produce images of
lower quality than tabletop retinographs. The algorithm
described in the present work is very lightweight: it re-
quires very little memory for storage, is very fast, and
consumes little energy, compared to the much larger state-
of-the-art networks. It can easily be integrated in an em-
bedded device, telling in real time the operator whether
another acquisition should be made.

6. Conclusion

In the present work, we use a fully-convolutional net-
work to segment the macular region, in order to assess the
quality of eye fundus images. Our algorithm is also able to
provide fovea localization, within 0.1 mm of human per-
formance in average, in the case image quality is deemed
sufficient.

Although macula visibility is not the only requirement
for a retinal image to be gradable for DR, the method
we propose is able to significantly reduce the number of
ungradable images sent to medical experts in teleophthal-
mology networks, saving both patient and physician time,
when the number of ophthalmologists is insufficient for
current needs and the diabetic population is expected to
grow much faster than that of the profession. It can also be
combined with other quality criteria, such as contrast and
sharpness, to build a complete quality assessment system.
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de-France, Diabetes & Metabolism 34 (3) (2008) 227 – 234.
doi:https://doi.org/10.1016/j.diabet.2007.12.006.

[9] K. Tozer, M. A. Woodward, P. A. Newman-Casey, Telemedicine
and Diabetic Retinopathy: Review of Published Screening Pro-
grams., Journal of endocrinology and diabetes 2 (4).

[10] American Diabetes Association, Executive Summary: Stan-
dards of Medical Care in Diabetes–2012, Diabetes Care 35 (Sup-
plement 1) (2012) S4–S10. doi:10.2337/dc12-s004.

[11] K. S. Sreejini, V. K. Govindan, A Review of Computer
Aided Detection of Anatomical Structures and Lesions of
DR from Color Retina Images, International Journal of Im-
age, Graphics and Signal Processing 7 (11) (2015) 55–69.
doi:10.5815/ijigsp.2015.11.08.

[12] C. Agurto, V. Murray, H. Yu, J. Wigdahl, M. Pattichis,
S. Nemeth, E. S. Barriga, P. Soliz, A Multiscale Optimization
Approach to Detect Exudates in the Macula, IEEE Journal of
Biomedical and Health Informatics 18 (4) (2014) 1328–1336.
doi:10.1109/JBHI.2013.2296399.
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