Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Memory Efficient Deployment of an Optical Flow Algorithm on GPU using OpenMP

Abstract : In this paper, we consider the recent set of OpenMP directives related to GPU deployment and seek an evaluation through the case of an optical flow algorithm. We start by investigating various agnostic transformations that attempt to improve memory efficiency. Our case study is the so-called Lucas-Kanade algorithm, which is typically composed of a series of convolution masks (approximation of the derivatives) followed by 2 × 2 linear systems for the optical flow vectors. Since, we are dealing with a stencil computation for each stage of the algorithm, the overhead of memory accesses together with the impact on parallel scalability are expected to be noticeable, especially with the complexity of the GPU memory system. We compare our OpenMP implementation with an OpenACC one from our previous work, both on a Quadro P5000.
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-02437182
Contributeur : Claire Medrala <>
Soumis le : lundi 13 janvier 2020 - 15:54:19
Dernière modification le : mardi 20 octobre 2020 - 19:24:06
Archivage à long terme le : : mardi 14 avril 2020 - 16:56:50

Fichier

A-726.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Olfa Haggui, Claude Tadonki, Fatma Sayadi, Bouraoui Ouni. Memory Efficient Deployment of an Optical Flow Algorithm on GPU using OpenMP. 20th International Conference on Image Analysis and Processing, Sep 2019, Trento, Italy. pp.477-487, ⟨10.1007/978-3-030-30645-8_44⟩. ⟨hal-02437182⟩

Partager

Métriques

Consultations de la notice

257

Téléchargements de fichiers

776