D. Baltieri, R. Vezzani, and R. Cucchiara, 3DPeS: 3D People Dataset for Surveillance and Forensics, Proceedings of the 2011 Joint ACM Workshop on Human Gesture and Behavior Understanding, pp.59-64, 2011.

F. Bolelli, L. Baraldi, M. Cancilla, and C. Grana, Connected components labeling on drags, Proceedings of the 25th International Conference on Pattern Recognition, 2018.

F. Bolelli, M. Cancilla, L. Baraldi, and C. Grana, Towards reliable experiments on the performance of connected components labeling algorithms, J. Real-Time Image Process, 2018.

R. Cederberg, Chain-link coding and segmentation for raster scan devices, Comput. Graph. Image Process, vol.10, issue.3, pp.224-234, 1979.

F. Chang and C. Chen, A component-labeling algorithm using contour tracing technique, International Conference on Document Analysis and Recognition, pp.741-745, 2003.

F. Chang, C. J. Chen, and C. J. Lu, A linear-time component-labeling algorithm using contour tracing technique, Comput. Vis. Image Underst, vol.93, issue.2, pp.206-220, 2004.

W. Chang, C. Chui, and J. Yang, Block-based connected-component labeling algorithm using binary decision trees, Sensors, vol.15, issue.9, pp.23763-23787, 2015.

J. Clemens, Optical character recognition for reading machine applications, 1965.

P. E. Danielsson, An improvement of Kruse's segmentation algorithm, Comput. Graph. Image Process, vol.17, issue.4, pp.394-396, 1981.

F. Dong, H. Irshad, E. Oh, M. F. Lerwill, E. F. Brachtel et al., Computational pathology to discriminate benign from malignant intraductal proliferations of the breast, PLoS One, vol.9, issue.12, p.114885, 2014.

C. Fiorio and J. Gustedt, Two linear time union-find strategies for image processing, Theor. Comput. Sci, vol.154, pp.165-181, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00549539

Z. Galil and G. Italiano, Data structures and algorithms for disjoint set union problems, ACM Comput. Surv, vol.23, issue.3, pp.319-344, 1991.

C. Grana, L. Baraldi, and F. Bolelli, Optimized connected components labeling with pixel prediction, Advanced Concepts for Intelligent Vision Systems, vol.10016, 2016.

C. Grana, D. Borghesani, and R. Cucchiara, Optimized blockbased connected components labeling with decision trees, IEEE Trans. Image Process, vol.19, issue.6, pp.1596-1609, 2010.

C. Grana, M. Montangero, and D. Borghesani, Optimal decision trees for local image processing algorithms, Pattern Recognit. Lett, vol.33, pp.2302-2310, 2012.

R. Haralick, Some neighborhood operations, Real Time Parallel Computing: Image Analysis, pp.11-35, 1981.

L. He, Y. Chao, K. Suzuki, L. He, Y. Chao et al., A linear time two-scan labeling algorithm, IEEE Int. Conf. Image Process, vol.5, issue.9, pp.1977-1987, 2007.

L. He, Y. Chao, and K. Suzuki, A run-based two-scan labeling algorithm, IEEE Trans. Image Process, vol.17, issue.5, pp.749-756, 2008.

L. He, X. Zhao, Y. Chao, and K. Suzuki, Configuration-transitionbased connected-component labeling, IEEE Trans. Image Process, vol.23, issue.2, pp.943-951, 2014.

M. J. Huiskes and M. S. Lew, The MIR Flickr Retrieval Evaluation, Proceedings of the 2008 ACM International Conference on Multimedia Information Retrieval, 2008.

B. Kruse, A fast algorithm for segmentation of connected components in binary images, Proceedings of First Scandinavian Conference on Image Analysis, 1980.

L. Lacassagne and B. Zavidovique, Light speed labeling: efficient connected component labeling on RISC architectures, J. Real-Time Image Process, vol.6, issue.2, pp.1596-1609, 2010.

R. Lumia, L. Shapiro, and O. Zuniga, A new connected components algorithm for virtual memory computers, Comput. Vis. Graph. Image Process, vol.22, issue.2, pp.287-300, 1983.

D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition, 2009.

T. Morrin, Chain-link copression of arbitrary black-white images, Comput. Graph. Image Process, vol.5, issue.2, pp.172-189, 1979.

M. Patwary, J. Blair, and F. Manne, Experiments on union-find algorithms for the disjoint-set data structure, Experimental Algorithms, pp.411-423, 2010.

A. Rosenfeld and J. L. Pfaltz, Sequential operations in digital picture processing, J. ACM, vol.13, issue.4, pp.471-494, 1966.

H. Samet and M. Tamminen, An improved approach to connected component labeling of images, International Conference on Computer Vision and Pattern Recognition, pp.312-318, 1986.

H. Schumacher and K. Sevcik, The synthetic approach to decision table conversion, Commun. ACM, vol.19, issue.6, pp.343-351, 1976.

J. Schwartz, M. Sharir, and A. Siegel, An efficient algorithm for finding connected components in a binary image, Computer Science Division, 1985.

L. D. Stefano and A. Bulgarelli, A simple and efficient connected components labeling algorithm, Processing 10th International Conference on Image Analysis and Processing, pp.322-327, 1999.

K. Suzuki, I. Horiba, and N. Sugie, Linear-time connected component labeling based on sequential local operations, Comput. Vis. Image Underst, vol.89, issue.1, pp.1-23, 2003.

K. Wu, E. Otoo, and A. Shoshani, Optimizing connected component labeling algorithms, SPIE Conf. Med. Imaging, vol.5747, pp.1965-1976, 2005.

K. Wu, E. Otoo, and K. Suzuki, Optimizing 2-pass connected components labeling algorithms, Pattern Anal. Appl, vol.12, issue.2, pp.117-135, 2009.

H. Zhao, Y. Fan, T. Zhang, and H. Sang, Stripe-based connected components labelling, Electron. Lett, vol.46, issue.21, pp.1434-1436, 2010.

, analysis, algorithms, optimisation and machine learning. He is cur