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A B S T R A C T

The use of down-the-drain products and the resultant release of chemicals may lead to pressures on the fresh-
water environment. Ecotoxicological impact assessment is a commonly used approach to assess chemical pro-
ducts but is still influenced by several uncertainty and variability sources. As a result, the robustness and re-
liability of such assessments can be questioned. A comprehensive and systematic assessment of these sources is,
therefore, needed to increase their utility and credibility. In this study, we present a method to systematically
analyse the uncertainty and variability of the potential ecotoxicological impact (PEI) of chemicals using a
portfolio of 54 shampoo products. We separately quantified the influence of the statistical uncertainty in the
prediction of physicochemical properties and freshwater toxicity as predicted from Quantitative Structure-
Property Relationships (QSPRs) and Quantitative Structure-Activity Relationships (QSARs) respectively, and of
various sources of spatial and technological variability as well as variability in consumer habits via 2D Monte
Carlo simulations. Overall, the variation in the PEIs of shampoo use was mainly the result of uncertainty due to
the use of toxicity data from three species only. All uncertainty sources combined resulted in PEIs ranging on
average over seven orders of magnitude (ratio of the 90th to the 10th percentile) so that an absolute quantifi-
cation of the ecological risk would not be meaningful. In comparison, variation in shampoo composition was the
most influential source of variability, although less than compared to uncertainty, leading to PEIs ranging over
three orders of magnitude. Increasing the number of toxicity data by increasing the number of species, either
through additional measurements or ecotoxicological modelling (e.g. using Interspecies Correlation Equations),
should get priority to improve the reliability of PEIs. These conclusions are not limited to shampoos but are
applicable more generally to the down-the-drain products since they all have similar data limitations and as-
sociated uncertainties relating to the availability of ecotoxicity data and variability in consumer habits and use.

1. Introduction

A significant number of chemical products, including many personal
care products, are commonly disposed down the drain after use. The
resulting discharge of their constituent chemicals to receiving waters
may lead to an increased ecotoxicological pressure on the receiving
ecosystem (Brausch and Rand, 2011; Caliman and Gavrilescu, 2009;
Petrie et al., 2015). Risk assessment is typically used to assess and
manage the environmental safety of individual chemicals in products
and help maintain aquatic ecosystems and the services they provide
(United Nations, 2018). A number of methods have already been

developed to assess the aggregate potential ecotoxicological impact of
products such as the critical dilution volume, the use of an impact score,
or so-called toxic units (Saouter et al., 2018; Swartz et al., 1995; Van
Hoof et al., 2011). Such assessments may be used for product com-
parisons and in product design.

The assessment of the potential ecotoxicological impacts (PEI) of
products requires quantitative information on emission, fate, and ef-
fects of their constituent chemicals (Brausch and Rand, 2011; Escher
et al., 2011; Rosenbaum et al., 2008). Data on the environmental fate
and ecotoxicological properties of individual chemicals is managed and
collated by regulatory agencies such as the European Chemicals Agency
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(European Chemicals Agency, 2015). However, the data in the REACH
database is of variable quality and actual toxicity data is often limited
for many chemicals (Saouter et al., 2017a; Saouter et al., 2017b).
Quantitative Structure-Property Relationships (QSPRs), Quantitative
Structure-Activity Relationships (QSARs), and Quantitative Structure
Biodegradability Relationship (QSBR) methods are often used to fill
data gaps in physicochemical properties as well as to predict the fate
(e.g. biodegradability and adsorption) and the toxicity of chemicals
(Golsteijn et al., 2014; Gramatica et al., 2016; Sarfraz Iqbal et al., 2013;
US EPA, n.d.). Yet, the use of QSAR predictions introduces additional
uncertainties in all properties derived from them (Golsteijn et al., 2012;
Harbers et al., 2006; Van Zelm et al., 2007).

Besides uncertainty, the assessment of the PEI of down-the-drain
products is also influenced by various sources of variability including
differences in the composition and formats of products (e.g. different
formulations), in consumer habits (e.g. amount used) (Escamilla et al.,
2012), in the presence and design of wastewater treatment plants
(WWTPs) (Luo et al., 2014), and in differences in environmental con-
ditions (Kounina et al., 2014) (e.g. high precipitation rates and low
freshwater depths will decrease the residence time of a chemical in the
freshwater compartment). To our knowledge, no research has system-
atically assessed and compared the influence of the different sources of
uncertainty and variability on the potential ecotoxicological impact of
down-the-drain products. We chose to focus on shampoos as a model
group of down-the-drain products because of their global use, the
number of different formulations or product types on sale, and the
availability of consumer habit information. Shampoos have also been
considered in previous exposure modelling studies for similar reasons
(Ernstoff et al., 2016).

Here, we present a method to quantify and compare the influence of
various sources of uncertainty and variability on the PEI of a single use
of a down-the-drain product, namely shampoo. Sources of uncertainty
considered were the predictive reliability of QSPRs and QSARs to es-
timate physicochemical properties as well as toxicity and the sampling
uncertainty due to the limited number of ecotoxicity data. Sources of
variability included were the variability in WWTP characteristics, the
spatial variability of environmental parameters, the chemical compo-
sition of the product, and the variability in the amount of product used
per application.

2. Methods

2.1. Potential ecotoxicological impact

The potential ecotoxicological impact (PEI) of product use is defined
in Eq. (1).

∑= ∙ ∙ − ∙ ∙ ∙
=

F EPEI A (1 ) (FF XF ) EFmass c P cP P
c 1

N

, , c,r c,r c
(1)

PEIP → Potential ecotoxicological impact per capita use of product P
[PAF*m3*day/capita]

AP → Per capita use of product P [g/capita]
N → Number of chemicals c contained in product P [dimensionless]
Fmass,c,P → Mass fraction of chemical c in product P [dimensionless]
Ec → Removal efficiency of chemical c by a WWTP [dimensionless]
FFc,r → Fate factor of chemical c in region r [day]
XFc → Exposure factor of chemical c in region r [dimensionless]
EFc → Effect factor of chemical c [PAF m3/g]
The PEI quantifies the potential impact on the freshwater environ-

ment of a single product use in terms of the potentially affected fraction
(PAF) of species integrated over space (m3) and time (day). PAF de-
scribes the fraction of species in an ecosystem exposed to environmental
concentrations higher than a concentration at which they are affected
at a specific level or not at all (Klepper et al., 1998). The PAF is derived
from species sensitivity distributions (SSDs) based on observed effect

concentrations of different species and allows inference about the entire
ecosystem (Posthuma et al., 2001). This definition aligns with the de-
finition of the ecotoxicological impact assessment method in life cycle
assessments (Hauschild and Huijbregts, 2015).

In brief, for a single product use, the potential impact on the
freshwater environment is expressed as the sum of the potential impact
of each chemical within the product. The amount of each chemical
predicted to enter the freshwater environment was determined as-
suming treatment in an activated sludge wastewater treatment plant
(WWTP). Any removal processes taking place during the use phase (e.g.
volatilisation or skin penetration) were assumed to be small and
omitted following current practices in environmental risk and impact
assessment (European Commission Joint Research Centre, 2003; Kapo
et al., 2016).

Removal efficiencies were estimated using the SimpleTreat pro-
gramme version 4.0 (Struijs, 2014). We then applied the approach
proposed in the USEtox model with 16 regionally specified conditions
to describe a single chemical's fate in the environment (Rosenbaum
et al., 2008; Saouter et al., 2018). For each chemical contained in a
product and each geographical region modelled in USEtox, the amount
of chemical released was multiplied by a fate factor (FF), quantifying
the residence time of the chemical in freshwater, and an exposure factor
(XF), taking into account that only a fraction of the chemical is freely
available for uptake in organisms (Pennington et al., 2004). The FF and
the XF are derived from the physicochemical properties of the chemi-
cals. These properties namely describe whether the chemical is likely to
volatilise (if its vapour pressure is high), sorb to soil (if its octanol-water
partitioning coefficient is high while considering its ionic character), or
degrade in any of the environmental compartment. The effect factor
(EF), which reflects the average chemical's toxic potency, was quanti-
fied with Eq. (2) following Huijbregts et al. (2010).

=EF
HC

0.5
50 (2)

where HC50 stands for the hazardous concentration affecting 50% of
the freshwater species at a concentration above their EC50. The EC50 is
the concentration where 50% of individuals show an effect. The EC50
values we considered described acute effects.

2.2. Uncertainty and variability

2.2.1. Overview
Table 1 lists the uncertainty and variability sources identified for

the parameters of Eq. (1). More details are provided in the Supple-
mentary Information (SI, S1).

2.2.2. Uncertainty
We chose to apply widely-accepted quantitative structure-property

relationships (QSPRs) to estimate the uncertain chemical properties
listed in Table 1 (Aronson et al., 2006; US EPA, n.d.). QSPRs are re-
gression models relating structural properties of chemicals to some of
their physicochemical properties. This way, we ensured a reproducible
methodology and a consistent quantification of the different un-
certainty sources for all chemicals included.

All physicochemical and environmental fate properties were esti-
mated with the EPI Suite programme (EPA, 2012) except for pKa and
KOC values. The ACD Labs programme was used to estimate the pKa
(ACD/Labs, 2017) because of its good performance (Liao and Nicklaus,
2009; Meloun and Bordovska, 2007). The KOC was estimated following
recommendations in ECETOC (2013), Franco and Trapp (2008) and
Sablijc et al. (1995) and using the KOW estimated from EPISuite. No
uncertainty distribution was hereby assigned to the KOW to avoid any
double-counting.

The EF for each chemical was derived from ecotoxicity values
(EC50s) estimated with three species-specific QSARs for
Pseudokirchneriella subcapitata, Daphnia magna, and Pimephales promelas
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respectively. The three species chosen cover three different trophic le-
vels to align with recommendations in literature (Hauschild and
Huijbregts, 2015; Huijbregts et al., 2010) and environmental risk as-
sessment guidelines. QSARs developed specifically for personal care
ingredients were used where possible and the resultant EC50 values are
hereafter referred to as EC50PeCP (Gramatica et al., 2016). For chemi-
cals outside the applicability domain of the personal care ingredient
QSARs we used the ECOSAR estimation programme from the US EPA.
This programme assigns a chemical to a class depending on its structure
and estimates EC50 values using a class-specific QSAR (EC50ECOSAR)
(EPA, 2017). Whenever multiple EC50ECOSAR estimates were available
per chemical and species type, the lowest value was selected.

In a next step, we assigned an uncertainty distribution to each

uncertain parameter as summarised in Table 2.
When the training datasets were available (section a in Table 2), we

quantified QSAR prediction uncertainty over the range of input values.
If not available (section b in Table 2), we assumed a constant QSAR
prediction uncertainty over the range of input values. Finally, some
parameters required specific approaches (section c in Table 2). This was
because the regression models were built on training data sets classified
via expert judgment, i.e. degradation rate constants kdegW, kdegSd and
kdegSl. For the biodegradation rates, we had to quantify the uncertainty
assuming a standard deviation in the reported values. We hereby based
our approach on values derived from experimental data collected in
(Aronson et al., 2006). The procedures for the individual parameters
are explained in more detail in the SI, S2.

Table 1
Uncertainty and variability sources influencing the quantification of the potential ecotoxicological impact included in this assessment. The section where each source
is explained in more details is shown in the table. n.a. stands for not applicable.

Parameter Uncertainty (Section 2.2.2) Variability (Section 2.2.3)

AP n.a. Inter-individual variability in product use habits
Fmass,c,P n.a. Each product formulation considered was used as the starting point to

compute a set of PEI while varying the uncertain and variable parameters
FFc.r Vapour pressure at 25 °C (Pvap), solubility at 25 °C (Sol), organic carbon-water

partitioning coefficient (KOC), pKa (negative base-10 logarithm of the acid dissociation
constant), and degradation rate constants in air (kdegA), water (kdegW), sediment
(kdegSd), and soil (kdegSl)

Spatial variability from the 16 regions implemented in USEtox

XFc pKa and organic carbon-water partitioning coefficient (KOC) Spatial variability from the 16 regions implemented in USEtox
Ec Vapour pressure at 25 °C (Pvap), solubility at 25 °C (Sol), organic carbon-water

partitioning coefficient (KOC), pKa, and degradation rate constants in wastewater
(kdegWW)

Technological variability between activated sludge wastewater treatment
plants (WWTPs) (Franco et al., 2013)

EFc Ecotoxicity values; limited sample size

Table 2
Parameters used to describe the uncertainty of the mean value of the physicochemical properties. x refers to the mean value of the property of interest, n is the size of
the training data set, p stands for the negative 10-logarithm, log() refers to the 10-logarithm of the value in brackets. Values in Italic represent the estimated value
provided by the estimation programme. D. magna stands for Daphnia magna, P. subcapitata for Pseudokirchneriella subcapitata and P. promelas for Pimephales promelas.
DT50 stands for the biodegradation half-life in water.

a. QSAR training data set available

Property x Uncertainty quantification n Estimation method

Pvap log(Pvap) (Mendenhall et al., 2009) 3037 (EPA, 2012), MPBVP Help
Sol log(Sol) (Mendenhall et al., 2009) 817 (EPA, 2012), WSKOWWIN Help
KOC acid log(KOC) (Mendenhall et al., 2009) 62 (Franco and Trapp, 2008)
KOC base log(KOC) (Mendenhall et al., 2009) 66 (ECETOC, 2013)
KOC neutral log(KOC) (Mendenhall et al., 2009) 81 (Sablijc et al., 1995)
EC50PeCPs pEC50 (Mendenhall et al., 2009) and published mean squared

errors.
72 D. magna
20 P. subcapitata
67 P. promelas

(Gramatica et al., 2014; Gramatica et al., 2016; Gramatica
et al., 2013)

b. QSAR training data set not available – error in estimating mean value only

Property x Uncertainty quantification Estimation method

pKa pKa Standard deviation provided by estimation programme per
chemical

(ACD/Labs, 2017) and Unilever internal documentation

kdegA Standard deviation derived from the coefficient of variation
of 0.4

(van Zelm and Huijbregts, 2013)

EC50ECOSAR EC50 Lognormal distribution following (Reuschenbach et al.,
2008)

(EPA, 2017)

HC50 log(HC50) Standard deviation from estimated EC50 values (Huijbregts et al., 2010)

c. Specific approaches

Property x Uncertainty quantification Estimation programme

DT50 log(median
(DT50))

Vary according to category (SI, S2) (Aronson et al., 2006; Sarfraz Iqbal et al., 2013)

kdegW Derived from degradation rate constant (DT50): kdegW=ln (2)/DT50
kdegSd Derived from degradation rate constant (DT50): kdegSd=ln (2)/(DT50/9)
kdegSl Derived from degradation rate constant (DT50): kdegSl=ln (2)/(DT50/2)
kdegWW Derived from kdegW: kdegWW=30 ∙ kdegW (EPA, 2017)
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2.2.3. Variability
Four sources of variability were considered in our study, two of

which were quantified using continuous probability distributions and
two were incorporated through computation of all possible scenarios.
Inter-individual variability in the amount of product used per applica-
tion was described using consumer use survey results (Ficheux et al.,
2016). Technological variability between WWTPs was incorporated by
assigning probability distributions to the technological parameters re-
quired in SimpleTreat, as described in Franco et al. (2013). These dis-
tributions describe actual design characteristics for WWTPs in Europe,
but were applied to the WWTPs for all regions as a first approximation.
These two variability sources together make up the initial variability.
We further included variability in product composition and variability
in environmental conditions by computing the PEI for each possible
combination. This means that for each product composition, we varied
the uncertain and variable parameters to derive a set of PEI. This was
repeated per product composition for all world regions implemented.
More details on the product chosen and the product compositions in-
cluded as well as the selection procedure are given in Section 2.3. The
16 world regions described by Kounina et al. (2014) hereby represent
different environmental conditions (e.g. different land area or mean
freshwater depth).

2.2.4. Monte Carlo analysis
Uncertainty and variability were separately propagated into the PEI

by means of a two dimensional Monte Carlo (2D MC) simulation, per-
formed with the program R, Version 3.3.2 (R Core Team, 2016). Per
product-region combination, a two-step iterative procedure was im-
plemented: First, all variable input parameters were sampled and fixed
(outer loop), followed by a Monte Carlo simulation with 1000 iterations
over the uncertain input parameters (inner loop). This was then re-
peated 1000 times, each time with a new set of variable parameter
values, but with the same 1000 uncertain parameter values. The var-
iance found in the inner and outer loops then reflects the influence of
uncertainty and variability, respectively (Fig. 1).

These variations were characterised using the uncertainty ratio (UR)
and variability ratio (VR) defined in Eqs. (3) and (4). Exemplarily, for
the uncertainty ratio, the 90th and 10th percentiles are taken from the
curve representing the median, i.e. the 50th percentile of the variability

distribution.

=UR
P90
P10

p50 variability

p50 variability (3)

=VR
P90
P10

p50 uncertainty

p50 uncertainty (4)

2.2.5. Parameter's importance analysis
The importance of uncertainty and variability in the continuous

input parameters (chemical properties, product use, and WWTP char-
acteristics) was investigated using Spearman correlation coefficients
(ρ). For the variable parameters, these coefficients were computed over
all 1000× 1000 simulations run per product-region combination. The
contribution of each parameter to the overall variation in the PEI (r)
was computed per product-region combination using Eq. (5).

=
∑

r
ρ

ρV1
V1
2

1
p

Vi
2 (5)

For the uncertain parameters, ρ and r were computed per variable
iteration per product-region combination for each chemical.

The influence of the categorical variables was assessed in a separate
step. Geographical variability was quantified as the change in variation
between the 16 different regions when the product formulation was
fixed. Analogously, the change in variation of the PEIs between pro-
ducts was quantified by fixing the region assessed.

2.3. Case study data

2.3.1. Shampoo formulations
We based our analysis on a set of 54 Unilever shampoo formulations

for which detailed information on the composition and properties of the
organic chemicals was available (SI, S4). These 54 shampoo composi-
tions described formulations from 20 different brands found in 13 dif-
ferent countries, and included regular as well as antidandruff sham-
poos.

The precise composition of each fragrance in every single shampoo
was not disclosed and hence fragrances were modelled using the pub-
licly available information on the fragrance composition provided by
Unilever for 12 shampoos in the USA on the SmartLabel website
(Grocery Manufacturers Association, 2017). Individual fragrance in-
gredients are disclosed by the producer only if they are present above
0.01% of the product formulation. The 12 fragrances were assigned by
shampoo brand in non-US countries (e.g. Brand A fragrance composi-
tion in the USA was assigned to Brand A shampoo formulations in other
countries). 31 shampoo formulations were from brands not present in
the US, and were therefore randomly assigned one of the 12 fragrances.
The weight fraction of each fragrance ingredient was derived by di-
viding the total fragrance weight fraction by the total number of in-
gredients.

2.3.2. Chemicals
We aimed to include as many chemicals as possible in the assess-

ment of the environmental impact of the shampoos considered.
However, some chemicals did not have clear SMILES notation and their
properties could therefore not be predicted with the available QSARs.
The shampoos containing chemicals with unclear or imprecise SMILES
notation with expected toxicities higher than 100mg/L (e.g. EC50 va-
lues< 100mg/L) were excluded from the analysis because their po-
tential ecotoxicological impact could not be considered adequately (14
in total). The toxicity threshold was set to 100mg/L as it represents a
concentration orders of magnitude higher than what can be expected
for chemicals in freshwater environments with the exposure scenarios
of these types of compounds. On the other hand, shampoos containing
chemicals with unclear or imprecise SMILES notations but with

Fig. 1. Cumulative probability distributions derived from the 1000 uncertain
iterations, each curve representing the outcome for a different set of variable
input parameters. Only the 90thand 10th percentiles are represented (dashed
grey curves) as well as the median (black curve). The spread between the curves
(highlighted in blue) represents the variability ratio, while the spread within
one curve (highlighted in orange) depicts the uncertainty ratio. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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expected toxicities lower than 100mg/L (e.g. EC50 values> 100mg/L)
were still considered in the analysis and the chemicals simply neglected
from the ecotoxicological computation. The ingredients neglected were:
plant extracts and oils, high molecular weight polymers, hydrolysed
milk and animal proteins, vitamins, proteins and amino acids, honey,
and yeast extract. Water was also neglected from the ecotoxicological
impact computation. In addition, inorganic chemicals (K+, N+, O2

−,
SiO2, Na+, NH4

+, Zn2+, Cl−, OH−) were also neglected due to the lack
of QSARs available to predict their fate and effect. The final total
number of chemicals included was 102 (SI, S4).

2.3.3. Amount of shampoo used
The consumer use survey results gathered in France by Ficheux et al.

(2016) were used to describe inter-individual variability in the amount
of shampoo used per application. The aim was hereby to quantify the
PEI of one use of shampoo somewhere in the world. From three can-
didate distributions, i.e. lognormal, gamma and Weibull, the lognormal
distribution was found to be the best fit (SI, S3).

3. Results

Fig. 2 shows that the uncertainty ratio (P90/P10) of the PEI was on
average around 7 orders of magnitude, but could range from nearly 4
to> 10 orders of magnitude depending upon the shampoo-region
combination. The variability ratio of 3 orders of magnitude for the PEI
of different shampoos within one region highlights the importance of
the differences in shampoo formulation. In contrast, assuming 100%
wastewater treatment, the variation in the median PEI between regions
was relatively small: the highest median (for North Africa) was only 2
times larger than the lowest one (for North Australia) (SI, S5). This is
also supported by the mean regional variability ratio of approximately
10 displayed in Fig. 2. The influence of the variable WWTP parameters
and the variation in the amount of shampoo used per application was
also small with a combined variability ratio of 8 (Fig. 2). Between both,
the relative Spearman rank correlation coefficients showed that the
influence of the variable WWTP parameters was nearly negligible
(around 3.5%) compared to the variation in the amount of shampoo
used per application (SI, S6).

In terms of their relative contribution to the PEI, the most important
classes of ingredients were surfactants and fragrances followed by hair
conditioning agents, antidandruff agents, and preservatives (Fig. 3).
Fragrances, sequestrants, and hair conditioning agents, for their part,
contributed largely to the variation in the final outcome as can be seen

by the long whiskers of these categories (Fig. 3).
The relative Spearman rank correlation coefficients showed that the

uncertainty in the effect factor was the most influential, followed by the
uncertainty in the removal efficiency from WWTPs, fate factor, and
exposure factor (Fig. 4). Given the small differences in terms of im-
portance analysis between regions, we present the contribution of the
different parameters to the total variation in the PEIs for Europe only.
The results for North Africa and North Australia are shown in the SI, S7.
The uncertainty in the effect factor consists of uncertainty in the QSAR
estimate itself as well as uncertainty resulting from the small number of
data points available to derive it. We found that the small sample size
was a particularly important source of uncertainty (SI, S8). We also
observed that the uncertainty in the effect factors derived only from
EC50ECOSAR was larger than when estimated from EC50PeCP only. In
fact, it could span up to two orders of magnitude when all three EC50
values were estimated from ECOSAR whereas EFs estimated from
EC50PeCP were always within the same order of magnitude (SI, S9).

The specific contribution of the physicochemical properties to the
uncertainty in the PEI is shown in Fig. 5 by chemical function. Un-
certainty in the biodegradation potential of fragrances and surfactants
in water, sediment, soil, and wastewater had the largest influence on
the uncertainty in the fate of the various chemical classes present in
shampoo. As can be expected, the uncertainty in the solubility, de-
gradation in air, and vapour pressure are more important for volatile
ingredients, such as fragrances, than for surfactants.

4. Discussion

4.1. Variability sources of the potential ecotoxicological impact

The sources of variability assessed in our analysis included the
amount of shampoo used, the shampoo composition, the WWTP's
technological parameters, and the environmental conditions for 16
world regions specified in the USEtox model. While previous research
highlighted the importance of consumer habits (amount of product
used) when quantifying the potential ecotoxicological impact of per-
sonal care products (Escamilla et al., 2012), we found that variations
between shampoo formulations were more important than differences
in the amount of shampoo used per application. This even though the
variability associated with differences in product formulation ac-
counted for differences between products from a single manufacturer
only. We could expect the variability associated with differences in
product formulations to increase when considering other

Fig. 2. Boxplots of the uncertainty (UR) and varia-
bility ratios (VR). The upper and lower line limits
represent the 90th and 10th percentiles, while the
box limits represent the 25th and 75th percentiles.
The bold line is the median. The statistical un-
certainty and initial variability correspond to the
URs and VRs respectively computed per shampoo-
region combination. The initial variability therefore
considers the variability in the amount of shampoo
used and the WWTP characteristics. In addition to
the initial variability, the shampoo composition
variability, describing the VRs computed per
shampoo over all regions, also considers the varia-
bility in the shampoo composition, while the re-
gional variability, describing the VRs computed per
region over all shampoos, considers the initial
variability and the variability between regions.
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Fig. 3. Contribution of the chemicals' functions to the total potential ecotoxicological impact (PEI).

Fig. 4. Importance of the uncertain parameters for the overall variation in the potential ecotoxicological impacts (PEI) computed for Europe. The direction of the bar
does not reflect the direction of the correlation. The whiskers represent the 10th and 90th percentile.

Fig. 5. Importance of the physicochemical properties
per chemical's function for the uncertainty in the
potential ecotoxicological impact, computed from
the Spearman correlation coefficients available for
Europe. KOC is the soil organic carbon-water parti-
tioning coefficient, kdegbio represent the biodegrada-
tion rate of the chemicals (in sediment, soil, water,
and wastewater), and kdegA the degradation rate in
air.
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manufacturers' formulations. We also tested the sensitivity of our re-
sults to the assumption of equal weight fractions for all fragrance in-
gredients in a product using three scenarios. First, weight fractions were
assigned randomly to the ingredients. Second, increasing weight frac-
tions were assigned to chemicals with larger ecotoxicological value, and
third, decreasing weight fractions were assigned to chemicals with
larger ecotoxicological values. The difference in the derived PEI was
smaller than 0.5 PAF m3 day/capita, much smaller than the observed
ranges when the uncertainty and variability sources are included (SI,
S10).

While the larger PEIs computed in North Africa compared to the
smaller ones in North Australia are in line with how the fate of the
chemicals is modelled in USEtox (Kounina et al., 2014) and reflect the
longer water residence time to the sea for the first compared to the
latter, the rather small influence of spatial variability across the 16
USEtox regions is surprising. Especially given that previous research has
revealed its importance in life cycle assessments (Azevedo et al., 2013;
Kounina et al., 2014). Some specificities of our study might have re-
duced the spatial variability's importance. For example, we used rela-
tively large regions to assess the importance of spatial variability.
Furthermore, Nijhof et al. (2016) showed a larger influence of the
spatial variability on freshwater fate factors of persistent chemicals
emitted to air and soil, while in our study we looked at chemicals that
are not highly persistent and emitted down the drain to freshwater only.
Also by assuming 100% connectivity to WWTPs we did not account for
the actual differences in the extent of connectivity to WWTPs between
the regions. However, changing the WWTP connectivity from 100 to
0% for a number of regions, meaning neglecting the removal of che-
micals by WWTP prior entering the freshwater environment, only in-
creased the mean PEIs by a factor of 2 (SI, S11). This in turn suggests
that a more complete consideration of WWTP connectivity might have
slightly increased the importance of spatial variation. Finally, because
of the lack of available information, we could not refine the technolo-
gical parameters of the WWTPs by region. However, we do not expect
this to significantly affect the results given the small influence these
parameters have on the total variation in PEI.

4.2. Uncertainty sources of the potential ecotoxicological impact

Besides variability, we also quantified the influence of uncertainty
in the physicochemical and ecotoxicity values on the variation in the
PEI. We showed that the variation in the PEI of the single use of a
shampoo was dominated by the limited number of ecotoxicity data.
This aligns with the findings of Harbers et al. (2006) and Bjorn et al.
(2014). Both studies further highlighted the importance of uncertainty
in ecotoxicological effects when quantifying the uncertainty in eco-
toxicological impact of chemicals released into the freshwater en-
vironment. Van Zelm et al. (2007); van Zelm et al. (2008), and Golsteijn
et al. (2014) also reported particularly uncertain effect factors of che-
micals with a low number of species ecotoxicity data (n≤ 3). Our re-
search is consistent with these findings, since we showed that the un-
certainty in the ecotoxicity QSAR estimates was not influencing the
uncertainty in the EFs as much as the small number of species with
ecotoxicity values available. However, we went a step further by
showing that also when other sources of variability and uncertainty are
considered, the uncertainty due to the limited number of species toxi-
city data is the dominant factor.

In assessing the total ecotoxicological impact of a shampoo for-
mulation we assumed additivity of the individual chemicals ecotoxicity
values (see Bjorn et al. (2014)). In the absence of known specific modes
of actions for all the chemicals and assuming that all compounds will
exhibit at least baseline toxicity at environmentally relevant con-
centrations, this assumption is considered justified in our case (SCHER
et al., 2012). We noted a higher contribution from the chemical clas-
sified as hair conditioning agents, sequestrants, and surfactants to the
overall uncertainty in the effect factors (> 10%). The main reason lies

in a combination of the higher weight fractions of these ingredients
(especially surfactants), their increased occurrence in the products
(especially sequestrants), and the large uncertainty of their effect fac-
tors. The latter is mainly due to the use of ecotoxicity values estimated
with ECOSAR, which show larger uncertainty ranges than the QSARs
from Gramatica et al. (2016). An additional word should be spent on
the ecotoxicity of antidandruff agents. Given that their action is speci-
fically anti-fungal and that no ecotoxicity values for fungi were avail-
able, the average toxicity of the antidandruff agents might have been
underestimated. The large uncertainty of the derived effect factor does
however likely account for such lack of knowledge.

Uncertainty in the fate properties of the chemicals also influenced
the overall uncertainty in the PEI, be it through its fate factor or re-
moval efficiency by WWTPs, as observed in e.g. Douziech et al. (2018).
We identified the uncertainty in the biodegradation potential of che-
micals as the most influential across all chemical function groupings.
This aligns to previous research where the uncertainty in biodegrad-
ability was found to be large as well as its influence on the outcome of
chemical impact assessments (Golsteijn et al., 2014; Huijbregts et al.,
2000; Scholz et al., 2017; Wender et al., 2017). Aronson et al. (2006);
Wender et al. (2017) also stressed the need for more accurate modelling
of biodegradation processes. We should also mention that the un-
certainty in biodegradation rates was not accounted for in the same way
than for the other parameters. Deriving the uncertainty of the biode-
gradation rate directly from the QSAR fit would further improve our
analysis. In addition, we showed that, depending on the chemical's
function, different physicochemical properties influenced the spread in
the computed PEI values. For example, the higher and wider range of
the vapour pressure of fragrance ingredients compared to the one of
surfactants, explains the greater importance of vapour pressure in the
contribution from fragrance ingredients compared to surfactants.

Of all the groups of chemicals in shampoo, surfactants, used as
cleaning agents, and fragrances contributed the most to the total PEI,
followed by hair conditioning agents, antidandruff agents, and pre-
servatives. These results are comparable with ecotoxicological assess-
ments of representative or typical household care products (Dewaele
et al., 2006; Golsteijn et al., 2015; Van Hoof et al., 2011) which like
shampoos typically contain relatively high concentrations of surfactants
and a range of fragrances ingredients. Our study is, however, one of the
few underpinning this for shampoos in particular using actual for-
mulations.

As stated in the methods section, to conduct a standardised assess-
ment we only used predicted physicochemical and ecotoxicity values.
This was necessary in order to evaluate all chemicals consistently (i.e.
comparable datasets for all chemicals) and to avoid omitting chemicals
with no or incomplete experimentally measured datasets. For the che-
micals with available experimental properties and ecotoxicity data
using only estimated ecotoxicity values may have led to an over-
estimation in the overall uncertainty. However, since the uncertainty in
our results was mostly driven by the uncertainty in the effect factor
which, in turn, is related to the use of toxicity data for only three
species, the overall conclusions of our work are likely to apply whether
or not species QSARs or test data are used. Even more so since for the
majority of chemicals registered in Europe, ecotoxicity test data are
only required for three species to establish safety using risk assessment.
Despite the good performance of the used ecotoxicity QSARs, the re-
presentativity of the estimated ecotoxicity values is not known. A
comparison to the available measured ecotoxicity values might have
given a hint but was considered outside the scope of this paper.

4.3. Implications for current and future research

The aim of this work was to assess the influence of various sources
of uncertainty and variability on a single use of personal care product.
The results presented are specific for shampoo, but we expect that the
conclusions can be generalised to other down-the-drain products. This
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is because down-the-drain products have similar data limitations and
associated variations related to the availability of ecotoxicity data and
the inherent variability in consumer habits and use.

Our calculations do not include chemical removal processes in the
showering phase, such as volatilisation and skin permeation. Current
comparative ecotoxicological risk assessment practices of down-the-
drain products neglect these removal processes, as the fraction removed
during showering is expected to be relatively small for the majority of
the chemicals, (< 2% (Csiszar et al., 2016)). Nevertheless, we re-
commend that future research should consider the removal processes in
the use phase, including showering, as well as their uncertainty and
variability when quantifying the environmental impact of down-the-
drain products.

We clearly showed that with the current knowledge, a comparison
of ecotoxicological results of life cycle assessments of products, for
example, can only be informative if confidence intervals are included. A
consistent communication of confidence intervals when such assess-
ments are conducted is therefore recommended. Our results also in-
dicate that the uncertainty in the effect factor drives the spread in the
results the most, which is due to the use of a limited number of species.
This highlights the need for additional ecotoxicological data either by
testing a more diverse set of freshwater species, which may be costly,
prohibited by a lack of standardised methods, or morally not accepted,
or by using Interspecies Correlation Equations (ICE) (Raimondo et al.,
2015). Our results suggest that estimated ecotoxicity values can com-
pensate for a lack of experimental data without resulting in large un-
certainty ranges. This was especially true when chemical-specific
QSARs were used. A first step to reduce uncertainty and fill knowledge
gaps in the PEI of personal care products would therefore be to develop
QSARs with large applicability domains and increased reliability for
additional specific freshwater species. In fact, extending the number of
species even from three to four can reduce the uncertainty in the EF by
orders of magnitude (see Van Zelm et al. (2007) and Golsteijn et al.
(2012)). In addition, our results suggest that the uncertainty of PEIs
could also be reduced by increasing the reliability of certain physico-
chemical properties of fragrances and surfactants. A second step to in-
crease the reliability of PEI would consist in the improvement of the
available methodologies for the estimation of the biodegradability of
chemicals (Wender et al., 2017). An improvement of the reliability of
these assessments is important to ensure that more meaningful con-
clusions can be drawn from comparative assessments of personal care
products.

Finally, our approach can also be used to assess uncertainty and
variability in the human health impact assessments of personal care
products. The per capita use of a product, the chemical mass fraction in
a product, the removal efficiency of a chemical by a WWTP, and the
environmental fate factor of a chemical, as quantified in our analysis,
are also relevant variables for assessing human health impacts (Ring
et al., 2018). An additional modelling step quantifying the fraction of
product volatilised or dermally adsorbed during use would further be
necessary. In addition, uncertainty and variability in exposure and ef-
fect factors for humans would also need to be quantified. For instance,
Ernstoff et al. (2016) showed that variable and uncertain parameters
result in one to three orders of magnitude variation in product intake
fractions (PiF) for shampoos from dermal intake and inhalation during
use. Uncertainty in effect factors, as reported by Huijbregts et al.
(2005), could be used for such an analysis as well.

5. Conclusion

The ability to reliably and meaningfully quantify the potential
ecotoxicological impacts of products would aid their design and com-
parison. However, we have shown that if the various sources of un-
certainty and variability are considered when calculating the PEI of
down-the-drain products such as shampoos, no differences in impacts of
each product's PEI can be observed. In addition, we showed that

research towards more accurate ecotoxicity estimation models (e.g.
chemical-specific models) can be a way to reduce the uncertainty of
these assessments. Nevertheless, in order to obtain more reliable out-
comes, an increased number of ecotoxicity data is needed since most
assessments are currently performed based on a limited number of
species, which drives the uncertainty more than the source of the data.
Including ecotoxicity values for more species either through more
measurements or modelling techniques, like ICE, can therefore largely
reduce uncertainty. Hereby, modelling techniques have the advantage
of being less resource and time intensive. In terms of representativity of
the derived ecotoxicity values, more research is necessary to assess the
validity of the available QSARs and justify their increased use in such
assessments. Finally, on-going efforts of regulating authorities to im-
prove data quality (e.g. ECHA) should help standardise and correct the
available data which in turn could be used to develop and improve
predictive modelling approaches.
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