C. Knight, Theoretical Modeling of Rapid Surface Vaporization with, Back Pressure AIAA J, vol.17, pp.519-542, 1979.

K. Hirano, R. Fabbro, and M. Muller, Experimental determination of temperature threshold for melt surface deformation during laser interaction on iron at atmospheric pressure, J. Phys. D. Appl. Phys, vol.44, p.435402, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00915592

J. Greses, P. Hilton, C. Barlow, W. Steen, P. G. Group et al., Spectroscopic studies of plume/plasma in different gas environments, 2001.

A. Samokhin and . Fedorov, Effect of Laser Radiation on Absorbing Condensed Matter, 1990.

S. Anisimov, Vaporization of metal absorbing laser radiation, Sov. Phys. JETP, vol.27, pp.182-185, 1968.

H. Hertz, Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume Ann. Phys, vol.253, pp.177-93, 1882.

M. Knudsen, Experimentelle Bestimmung des Druckes gesättigter Quecksilberdämpfe bei 0° und höheren, Temperaturen Ann. Phys, vol.334, pp.179-93, 1909.

I. Langmuir, The effect of space charge and residual gases on thermionic currents in high vacuum, Phys. Rev, vol.2, pp.450-86, 1913.

V. Semak and A. Matsunawa, The role of recoil pressure in energy balance during laser materials processing, J. Phys. D. Appl. Phys, vol.30, pp.2541-52, 1997.

S. Harilal, G. V. Miloshevsky, P. Diwakar, N. Lahaye, and A. Hassanein, Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere, Phys. Plasmas, vol.19, pp.1-11, 2012.

A. Palya, O. Ranjbar, L. Z. Volkov, and A. , Kinetic simulations of laser-induced plume expansion into a background gas under conditions of spatial confinement, Int. J. Heat Mass Transf, vol.132, pp.1029-52, 2019.

J. Girardot, P. Lorong, L. Illoul, N. Ranc, M. Schneider et al., Modeling laser drilling in percussion regime using constraint natural element method, Int. J. Mater. Form, vol.10, pp.205-224, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01285198

J. Lee, S. Ko, D. Farson, and C. Yoo, Mechanism of keyhole formation and stability in stationary laser welding, J. Phys. D. Appl. Phys, vol.35, pp.1570-1576, 2002.

M. Courtois, M. Carin, P. Masson, G. S. Le, and M. Balabane, A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding, J. Phys. D. Appl. Phys, vol.46, p.505305, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00914785

W. Tan, N. Bailey, and Y. Shin, Investigation of keyhole plume and molten pool based on a threedimensional dynamic model with sharp interface formulation, J. Phys. D. Appl. Phys, vol.46, p.55501, 2013.

V. Bruyere, C. Touvrey, P. Namy, and N. Authier, , 2017.

, Multiphysics modeling of pulsed laser welding, J. Laser Appl, vol.29, p.22403

S. Sharma, V. Mandal, S. Ramakrishna, and J. Ramkumar, Numerical simulation of melt pool oscillations and protuberance in pulsed laser micro melting of SS304 for surface texturing applications, J. Manuf. Process, vol.39, pp.282-94, 2019.

H. Ki, P. Mohanty, and J. Mazumder, A numerical method for multiphase incompressible thermal flows with solid-liquid and liquid-vapor phase transformations Numer, Heat Transf. Part B Fundam, vol.48, pp.125-170, 2005.

A. Otto and M. Schmidt, Towards a universal numerical simulation model for laser material processing Phys. Procedia, vol.5, pp.35-46, 2010.

S. Pang, K. Hirano, R. Fabbro, and T. Jiang, Explanation of penetration depth variation during laser welding under variable ambient pressure, J. Laser Appl, vol.27, p.22007, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01203337

S. Pang, X. Chen, J. Zhou, X. Shao, and C. Wang, 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect, Opt. Lasers Eng, vol.74, pp.47-58, 2015.

S. Pang, X. Chen, X. Shao, S. Gong, and X. J. , Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity, Opt. Lasers Eng, vol.82, pp.28-40, 2016.

M. Courtois, C. M. , L. Masson, P. , G. S. Balabane et al., Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding, J. Phys. D. Appl. Phys, vol.49, p.155503, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02110752

A. Masmoudi, R. Bolot, and C. Coddet, Investigation of the laser-powder-atmosphere interaction zone during the selective laser melting process, J. Mater. Process. Technol, vol.225, pp.122-154, 2015.

S. Khairallah, A. Anderson, R. A. King, and W. , Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms, Journal XX (XXXX) XXXXXX, 2016.

Y. Mayi, et al 15 of pores, spatter, and denudation zones Acta Mater, vol.108, pp.36-45

P. Bidare, I. Bitharas, R. Ward, M. Attallah, and A. Moore, Fluid and particle dynamics in laser powder bed fusion Acta Mater, vol.142, pp.107-127, 2017.

M. Tang, P. Pistorius, and J. Beuth, Prediction of lack-of-fusion porosity for powder bed fusion Addit, Manuf, vol.14, pp.39-48, 2017.

A. Klassen, T. Scharowsky, and C. Körner, Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods, J. Phys. D. Appl. Phys, vol.47, 2014.

A. Otto and M. Schmidt, Towards a universal numerical simulation model for laser material processing Phys. Procedia, vol.5, pp.35-46, 2010.

M. Matthews, G. Guss, S. Khairallah, A. Rubenchik, P. Depond et al., Denudation of metal powder layers in laser powder bed fusion processes Acta Mater, vol.114, pp.33-42, 2016.

V. Gunenthiram, P. Peyre, M. Schneider, M. Dal, F. Coste et al., Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process, J. Mater. Process. Technol, vol.251, pp.376-86, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01825515

S. Dey and A. Papanicolaou, Sediment threshold under stream flow: A state-of-the-art review KSCE, J. Civ. Eng, vol.12, pp.45-60, 2008.

A. Clark, M. Shattuck, N. Ouellette, O. 'hern, and C. , Onset and cessation of motion in hydrodynamically sheared granular beds, Phys. Rev. E -Stat. Nonlinear, Soft Matter Phys, vol.92, pp.1-7, 2015.

C. Bonacina, G. Comini, A. Fasano, and M. Primicerio, Numerical solution of phase-change problems, Int. J. Heat Mass Transf, vol.16, pp.1825-1857, 1973.

V. Voller and C. Prakash, A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems, Int. J. Heat Mass Transf, vol.30, pp.1709-1728, 1987.

L. Ladani, J. Romano, W. Brindley, and S. Burlatsky, Effective liquid conductivity for improved simulation of thermal transport in laser beam melting powder bed technology Addit, Manuf, vol.14, pp.13-23, 2017.

G. Tryggvason, A. Esmaeeli, L. J. Biswas, and S. , , 2009.

, Direct numerical simulations of gas/liquid multiphase flows, Fluid Dyn. Res, vol.38, pp.660-81

, Comsol Multiphysics® Reference Manual, 2018.

K. Mills, Recommended values of thermophysical properties for selected commercial alloys, 2002.

, Air Liquide 2019 Gas Encyclopedia

M. Schneider, L. Berthe, M. Muller, and R. Fabbro, A fast method for morphological analysis of laser drilling holes, J. Laser Appl, vol.22, pp.127-158, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00795470

A. Matsunawa, J. Kim, T. T. Katayama, and S. , Spectroscopic studies on laser induced plume of aluminum alloys ICALEO, vol.719, 1995.

Y. Kawahito, N. Matsumoto, M. Mizutani, and S. Katayama, Characterisation of plasma induced during high power fibre laser welding of stainless steel Sci, Technol. Weld. Join, vol.13, pp.744-752, 2008.

J. Dubois, Étude expérimentale de jets libres, 2010.

A. Matsunawa, N. Seto, J. Kim, M. , M. Katayama et al., Observation of Keyhole and Molten Pool Behaviour Trans. Join. Weld. Res. Inst, vol.30, pp.13-27, 2001.

H. Kull, Rayleigh-Taylor Instability Phys. Rep, vol.206, pp.197-325, 1991.

P. Bidare, I. Bitharas, R. Ward, M. Attallah, and A. Moore, Laser powder bed fusion in high-pressure atmospheres, Int. J. Adv. Manuf. Technol, vol.99, pp.543-55, 2018.

M. Zalo?nik and H. Combeau, An operator splitting scheme for coupling macroscopic transport and grain growth in a two-phase multiscale solidification model: Part I -Model and solution scheme, Comput. Mater. Sci, vol.48, pp.1-10, 2010.

R. Flemmer and C. Banks, On the drag coefficient of a sphere Powder Technol, vol.48, pp.217-238, 1986.

Q. Guo, C. Zhao, L. Escano, Z. Young, L. Xiong et al., Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ highspeed high-energy x-ray imaging Acta Mater, vol.151, pp.169-80, 2018.