Accéder directement au contenu Accéder directement à la navigation

End-to-End Model-Free Reinforcement Learning for Urban Driving using Implicit Affordances

Abstract : Reinforcement Learning (RL) aims at learning an optimal behavior policy from its own experiments and not rule-based control methods. However, there is no RL algorithm yet capable of handling a task as difficult as urban driving. We present a novel technique, coined implicit affor-dances, to effectively leverage RL for urban driving thus including lane keeping, pedestrians and vehicles avoidance, and traffic light detection. To our knowledge we are the first to present a successful RL agent handling such a complex task especially regarding the traffic light detection. Furthermore , we have demonstrated the effectiveness of our method by winning the Camera Only track of the CARLA challenge.
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger
Contributeur : Fabien Moutarde <>
Soumis le : vendredi 20 mars 2020 - 17:39:27
Dernière modification le : mercredi 25 mars 2020 - 01:19:40


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-02513566, version 1


Marin Toromanoff, Emilie Wirbel, Fabien Moutarde. End-to-End Model-Free Reinforcement Learning for Urban Driving using Implicit Affordances. IEEE conference on Computer Vision and Pattern Recognition (CVPR'2020), Jun 2020, Seattle, United States. ⟨hal-02513566⟩



Consultations de la notice


Téléchargements de fichiers