B. Stoll, J. Andrade, S. Cohen, G. Brinkman, and C. B. Martinez-anido, Hydropower modeling challenges, 2017.

B. Hamududu and A. Killingtveit, Assessing climate change impacts on global hydropower, Energies, vol.5, pp.305-322, 2012.

W. Köppen, The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of the heat on the organic world, Meteorologische Zeitschrift, vol.20, pp.351-360, 2011.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2009.

N. A. Treiber, J. Heinermann, and O. Kramer, Wind Power Prediction with Machine Learning, Computational Sustainability, vol.645, 2016.

C. Voyant, G. Notton, S. Kalogirou, M. Nivet, C. Paoli et al., Fouilloy, Machine learning methods for solar radiation forecasting: A review, Renewable Energy, vol.105, pp.569-582, 2017.

F. Kratzert, D. Klotz, C. Brenner, K. Schulz, and M. Herrnegger, Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks, Hydrol. Earth Syst. Sci, vol.22, pp.6005-6022, 2018.

P. Drobinski, Wind and solar renewable energy potential resources estimation, Encyclopedia of Life Support Systems (EOLSS), 2012.

L. Gaudard and F. Romerio, The future of hydropower in Europe: Interconnting climate, markets and policies, Enviromental science and policy, vol.37, pp.172-181, 2014.

B. Schaefli, Projecting hydropower production under future climates: a guide for decision-makers and modelers to interpret and design climate change impact assessments, WIREs Water, vol.2, pp.271-289, 2015.

, Access, vol.12, 2018.

V. Krakowski, E. Assoumou, V. Mazauric, and N. Maïzi, Feasible path toward 40-100% renewable energy shares for power supply in france by 2050: A prospective analysis, Appl. Energy, vol.171, pp.501-522, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01293627

, European Climatic Energy Mixes (ECEM) website, 2016.

A. J. Smola and B. Schölkopf, A tutorial on support vector regression, Statistics and Computing, vol.14, pp.199-222, 2004.

J. H. Friedman, Greedy function approximation: A gradient boosting machine, The Annals of Statistics, vol.29, pp.1189-1232, 2001.

L. Breiman, Random forests, Machine learning, vol.45, issue.1, pp.5-32, 2001.

, MATLAB and Statistics and Machine Learning Toolbox release 2018b, the MathWorks

, MATLAB and Deep Learning Toolbox, the MathWorks, Inc., Natick, Massachusetts

H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik, Support vector regression machines, Advances in neural information processing systems, pp.155-161, 1997.

Y. Gala, A. Fernández, J. Díaz, and J. R. Dorronsoro, Hybrid machine learning forecasting of solar radiation values, Neurocomputing, vol.176, pp.48-59, 2016.

. Dec, , 2018.

K. Pearson, Notes on regression and inheritance in the case of two parents, Proceedings of the Royal Society of London, vol.58, pp.240-242, 1895.