R. Dupin, A. Michiorri, and E. G. Kariniotakis, Optimal Dynamic Line Rating Forecasts Selection Based on Ampacity Probabilistic Forecasting and Network Operators' Risk Aversion, IEEE Trans. Power Syst, vol.1, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01998856

M. A. Matos, R. J. Bessa, C. Gonçalves, L. Cavalcante, V. Miranda et al., Setting the maximum import net transfer capacity under extreme RES integration scenarios, Proceedings of the 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), pp.1-7, 2016.

C. Gallego-castillo, R. Bessa, L. Cavalcante, and E. O. Lopez-garcia, On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power, vol.113, pp.355-365, 2016.

, IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors, Revision of IEEE Std 738-2006-Incorporates IEEE Std 738, vol.IEEE, pp.1-72, 2012.

W. Cigre, Thermal Behaviour of Overhead Conductors, vol.12, p.14, 2002.

A. Michiorri, P. C. Taylor, S. C. Jupe, and E. C. Berry, Investigation into the influence of environmental conditions on power system ratings, Inst. Mech. Eng. Part A J. Power Energy, vol.223, pp.743-757, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01848969

A. Michiorri, R. Currie, P. Taylor, F. Watson, and D. Macleman, Dynamic Line Ratings Deployment on the Orkney Smart Grid, 2011.

C. Tumelo-chakonta and K. Kopsidas, Assessing the value of employing dynamic thermal rating on system-wide performance, Proceedings of the 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, pp.1-8, 2011.

S. Uski, Estimation method for dynamic line rating potential and economic benefits, Int. J. Electr. Power Energy Syst, vol.65, pp.76-82, 2015.

B. Banerjee, D. Jayaweera, and S. Islam, Risk constrained short-term scheduling with dynamic line ratings for increased penetration of wind power, Renew. Energy, vol.83, pp.1139-1146, 2015.

A. Safdarian, M. Z. Degefa, M. Fotuhi-firuzabad, and M. Lehtonen, Benefits of Real-Time Monitoring to Distribution Systems: Dynamic Thermal Rating, IEEE Trans. Smart Grid, vol.6, pp.2023-2031, 2015.

L. F. Ochoa, L. C. Cradden, and G. P. Harrison, Demonstrating the capacity benefits of dynamic ratings in smarter distribution networks, Proceedings of the 2010 Innovative Smart Grid Technologies (ISGT), pp.1-6, 2010.

J. P. Gentle, K. S. Myers, J. W. Bush, S. A. Carnohan, and M. R. West, Dynamic Line Rating systems: Research and policy evaluation, Proceedings of the 2014 IEEE PES General Meeting | Conference Exposition, pp.1-5, 2014.

J. Teh and I. Cotton, Reliability Impact of Dynamic Thermal Rating System in Wind Power Integrated Network, IEEE Trans. Reliab, vol.65, pp.1081-1089, 2016.

H. Shaker, H. Zareipour, and M. Fotuhi-firuzabad, Reliability Modeling of Dynamic Thermal Rating, IEEE Trans. Power Deliv, vol.28, pp.1600-1609, 2013.

A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer et al., Forecasting for dynamic line rating, Renew. Sustain. Energy Rev, vol.52, pp.1713-1730, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01199238

T. Ringelband, P. Schäfer, and A. Moser, Probabilistic ampacity forecasting for overhead lines using weather forecast ensembles, Electr. Eng, vol.95, pp.99-107, 2013.

F. Fan, K. Bell, and D. Infield, Probabilistic Real-Time Thermal Rating Forecasting for Overhead Lines by Conditionally Heteroscedastic Auto-Regressive Models, IEEE Trans. Power Deliv, vol.32, pp.1881-1890, 2017.

J. L. Aznarte and N. Siebert, Dynamic Line Rating Using Numerical Weather Predictions and Machine Learning: A Case Study, IEEE Trans. Power Deliv, vol.32, pp.335-343, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01331743

A. Chaichana, Computation of Dynamic Line Rating of Overhead Transmission Line Using Weather Forecast and Interval Arithmetic, Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering, pp.12-15, 2018.

A. Piccolo, A. Vaccaro, and D. Villacci, Thermal rating assessment of overhead lines by Affine Arithmetic, Electr. Power Syst. Res, vol.71, pp.275-283, 2004.

N. Viafora, S. Delikaraoglou, P. Pinson, and J. Holbøll, Chance-constrained optimal power flow with non-parametric probability distributions of dynamic line ratings, Int. J. Electr. Power Energy Syst, vol.114, 2020.

T. Jónsson, P. Pinson, H. Madsen, and H. A. Nielsen, Predictive densities for day-ahead electricity prices using time-adaptive quantile regression, vol.7, pp.5523-5547, 2014.

N. Meinshausen, Quantile Regression Forests, J. Mach. Learn. Res, vol.7, pp.983-999, 2006.

J. Beirlant, T. D. Wet, and Y. Goegebeur, Nonparametric estimation of extreme conditional quantiles, J. Stat. Comput. Simul, vol.74, pp.567-580, 2004.

S. Lloyd, Least squares quantization in PCM, IEEE Trans. Inform. Theory, vol.28, pp.129-137, 1982.

C. Grigg, P. Wong, P. Albrecht, R. Allan, M. Bhavaraju et al., The IEEE Reliability Test System-1996. A report prepared by the Reliability Test System Task Force of the Application of Probability Methods Subcommittee, IEEE Trans. Power Syst, vol.14, pp.1010-1020, 1999.

M. W. Davis, A new thermal rating approach: The real time thermal rating system for strategic overhead conductor transmission lines-Part I: General description and justification of the real time thermal rating system, IEEE Trans. Power Appar. Syst, vol.96, pp.803-809, 1977.

Z. Toth, O. Talagrand, G. Candille, and Y. Zhu, Probability and ensemble forecasts. Forecast Verification. In A Practitioner's Guide in Atmospheric Science

X. Sun, P. B. Luh, K. W. Cheung, and W. Guan, Probabilistic forecasting of dynamic line rating for over-head transmission lines, Proceedings of the 2015 IEEE Power Energy Society General Meeting, pp.1-5, 2015.

T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli et al., Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond, Int. J. Forecast, vol.32, pp.896-913, 2016.

T. Gneiting and E. A. Raftery, Strictly Proper Scoring Rules, Prediction, and Estimation, J. Am. Stat. Assoc, vol.102, pp.359-378, 2007.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI