J. E. Shelby, Introduction to glass science and technology. Cambridge: The Royal Society of Chemistry, 2005.

L. Abbas, L. Bih, A. Nadiri, Y. El-amraoui, D. Mezzane et al., Properties of mixed Li 2 O and Na 2 O molybdenum phosphate glasses, J. Mol. Struct, vol.876, issue.1, pp.194-198, 2008.

L. F. Pereira, K. Bodiang, E. H. Nunes, F. O. Mear, L. Delevoye et al., Molybdenum Influence on the Mixed-Alkali Effect of Lithium-Sodium Phosphate Glasses, J. Phys. Chem. C, vol.122, issue.28, pp.15886-15891, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01969842

L. Koudelka, O. Kupetska, P. Kalenda, P. Mo?ner, L. Montagne et al., Crystallization of sodium molybdate-phosphate and tungstate-phosphate glasses, J. Non-Cryst. Solids, vol.500, pp.42-48, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01969847

D. Möncke, J. Jiusti, L. D. Silva, and A. C. Rodrigues, Long-term stability of laser-induced defects in (fluoride-)phosphate glasses doped with W, Mo, Ta, Nb and Zr ions, J. Non-Cryst. Solids, vol.498, pp.401-414, 2018.

A. Best, Redox behaviour and fining of molten glass, 1994.

L. N?mec, Refining in the Glassmelting Process, J. Am. Ceram. Soc, vol.60, issue.9, pp.436-440, 1977.

M. Cable, Kinetics and Mechanisms of Fining Glasses, J. Am. Ceram. Soc, vol.49, issue.8, pp.436-441, 1966.

E. Vernaz, S. Gin, C. W. Veyer, and . Glass, Comprehensive Nuclear Materials, pp.451-483, 2012.

O. Pinet, J. Phalippou, and C. Di-nardo, Modeling the redox equilibrium of the Ce4+/Ce3+ couple in silicate glass by voltammetry, J. Non-Cryst. Solids, vol.352, pp.5382-5390, 2006.

S. Lee, P. Hrma, and R. Pokorny, Effect of melter feed foaming on heat flux to the cold cap, J. Nucl. Mater, vol.496, pp.54-65, 2017.

L. Pereira, O. Podda, B. Fayard, A. Laplace, and F. Pigeonneau, Experimental study of bubble formation in a glass-forming liquid doped with cerium oxide, J. Am. Ceram. Soc, vol.103, pp.2453-2462, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02425226

M. Hujova, R. Pokorný, and J. Klou?ek, Foaming during nuclear waste melter feeds conversion to glass: Application of evolved gas analysis, Int. J. Appl. Glass Sci, vol.9, issue.4, pp.487-498, 2018.

V. C. Kress and I. S. Carmichael, The compressibility of silicate liquids containing Fe 2 O 3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states, Contrib. Mineral. Petrol, vol.108, issue.1-2, pp.82-92, 1991.

K. Yamada, H. Emori, and K. Nakazawa, Time-evolution of bubble formation in a viscous liquid, Earth Planets Space, vol.60, issue.6, pp.661-679, 2008.

C. Martel and G. Iacono-marziano, Timescales of bubble coalescence, outgassing, and foam collapse in decompressed rhyolitic melts, Earth Planet. Sci. Lett, vol.412, pp.173-185, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01102052

C. Martel and H. Bureau, In situ high-pressure and high-temperature bubble growth in silicic melts, Earth Planet. Sci. Lett, vol.191, issue.1, pp.115-127, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00089802

M. Cable and J. R. Frade, Diffusion-controlled mass transfer to or from spheres with concentration-dependent diffusivity, Chem. Eng. Sci, vol.42, issue.11, pp.2525-2530, 1987.

F. Pigeonneau, Coupled modelling of redox reactions and glass melt fining processes, Glass Technol.: Eur. J. Glass Sci. Technol. A, vol.48, issue.2, pp.66-72, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01442935

L. N?mec, M. Vernerova, P. Cincibusová, M. Jebava, and J. Klou?ek, The semiempirical model of the multicomponent bubble behaviour in glass melts, Ceramics -Silikaty, vol.56, pp.367-73, 2012.

L. N?mec and J. Klou?ek, Modelling of glass refining kinetics. Part 1: single bubbles, Ceramics -Silikaty, vol.47, pp.81-87, 2003.

M. Jebava, L. N?mec, and J. Klou?ek, Kinetic and equilibrium data of gases in glass melts, Ceramics -Silikaty, vol.48, pp.121-127, 2004.

C. Greene and R. F. Gaffney, Apparatus for measuring the rate of absorption of a bubble in glass, J. Amer. Ceram. Soc, vol.42, pp.271-275, 1959.

C. H. Greene and I. Kitano, Rate of solution of oxygen bubbles in commercial glasses, Glastech. Ber, vol.32, pp.44-48, 1959.

R. Doremus, Diffusion of oxygen from contracting bubbles in molten glass, J. Amer. Ceram. Soc, vol.43, pp.655-661, 1960.

J. ?lutický and L. N?mec, Monitoring of the Refining Process in Glass Melts During Melting, Glastech Ber, vol.50, issue.3, pp.57-61, 1977.

J. Klou?ek and L. N?mec, Modelling of glass refining kinetics. Part 2: Bubble distribution models and methods of measurement of refining properties, Ceramics -Silikaty, vol.47, pp.155-161, 2003.

F. Pigeonneau, Mechanism of mass transfer between a bubble initially composed of oxygen and molten glass, Int. J. Heat Mass Transfer, vol.54, pp.1448-1455, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00540956

F. Pigeonneau, Mass transfer of a rising bubble in molten glass with instantaneous oxidation-reduction reaction, Chem. Eng. Sci, vol.64, issue.13, pp.3120-3129, 2009.

J. Plessers, P. Laimbock, A. Faber, and T. Tonthat, Rapidox: A new tool for redox measurements in glass samples, Ceramic Engineering and Science Proceedings, pp.145-158, 1998.

O. Pinet, J. Hollebecque, and I. Hugon, Glass ceramic for the vitrification of high level waste with a high molybdenum content, J. Nucl. Mater, vol.519, pp.121-127, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02421740

H. Vogel, Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten, Physik. Z, vol.22, pp.645-646, 1921.

G. S. Fulcher, Analisis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc, vol.8, issue.6, pp.339-355, 1925.

G. Tammann and W. Hesse, Die Abhängigkeit der Viskosität von der Temperatur bie unterkühlten Flüssigkeiten, Z. Anorg. Allg. Chem, vol.156, pp.245-257, 1926.

M. Yamashita, M. Suzuki, H. Yamanaka, and K. Takahashi, Surface tension measurement of glass melts by the maximum bubble pressure method, Glass Sci. Technol, vol.73, issue.11, pp.337-343, 2000.

M. Vernerová, L. N?mec, J. Klou?ek, and M. Hujová, Gas release phenomena in soda-lime-silica glass, J. Non-Cryst. Solids, vol.500, pp.158-166, 2018.

M. Vernerová, P. Cincibusová, J. Klou?ek, T. Maehara, and L. N?mec, Method of examination of bubble nucleation in glass melts, J. Non-Cryst. Solids, vol.411, pp.59-67, 2015.

R. Pokorný, P. Hrma, S. Lee, J. Klouzek, M. K. Choudhary et al., Modeling batch melting: Roles of heat transfer and reaction kinetics, J. Amer. Cer. Soc, vol.103, pp.701-718, 2020.

M. Vernerová, J. Klou?ek, and L. N?mec, Reaction of soda-lime-silica glass melt with water vapour at melting temperatures, J. Non-Cryst. Solids, vol.416, pp.21-30, 2015.

F. Pigeonneau, D. Martin, and O. Mario, Shrinkage of oxygen bubble rising in a molten glass, Chem. Eng. Sci, vol.65, pp.3158-3168, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00498803

R. Clift, J. R. Grace, M. E. Weber, and . Bubbles, Drops, and Particles, 1978.

J. Hadamard, Mouvement permanent lent d'une sphère liquide et visqueuse dans un liquide visqueux, C. R. Acad. Sci. Paris, vol.152, pp.1735-1738, 1911.

W. Rybczynski, Uber die fortschreitende bewegun einer flussingen kugel in einem zaben medium, Bull. de l'Acad. des Sci. de Cracovie, série A, vol.1, pp.40-46, 1911.

R. G. Beerkens, Analysis of advanced and fast fining processes for glass melts, Advances in Fusion and Processing of Glass III, pp.3-24, 2004.

. Pereira, Experimental and numerical investigations of an oxygen single-bubble shrinkage in a borosilicate glass-forming liquid doped with cerium oxide, J. Amer. Ceram. Soc, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02913486