Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

A real-time unscented Kalman filter on manifolds for challenging AUV navigation

Abstract : We consider the problem of localization and navigation of Autonomous Underwater Vehicles (AUV) in the context of high performance subsea asset inspection missions in deep water. We propose a solution based on the recently introduced Unscented Kalman Filter on Manifolds (UKF-M) for onboard navigation to estimate the robot's location, attitude and velocity, using a precise round and rotating Earth navigation model. Our algorithm has the merit of seamlessly handling nonlinearity of attitude, and is far simpler to implement than the extended Kalman filter (EKF), which is widely used in the navigation industry. The unscented transform notably spares the user the computation of Jacobians and lends itself well to fast prototyping in the context of multi-sensor data fusion. Besides, we provide the community with feedback about implementation, and execution time is shown to be compatible with real-time. Realistic extensive Monte-Carlo simulations prove uncertainty is estimated with accuracy by the filter, and illustrate its convergence ability. Real experiments in the context of a 900m deep dive near Marseille (France) illustrate the relevance of the method.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-02915271
Contributeur : Silvere Bonnabel <>
Soumis le : vendredi 14 août 2020 - 05:23:18
Dernière modification le : jeudi 24 septembre 2020 - 17:04:01

Fichier

root(2).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02915271, version 1

Citation

Théophile Cantelobre, Clément Chahbazian, Arnaud Croux, Silvère Bonnabel. A real-time unscented Kalman filter on manifolds for challenging AUV navigation. IEEE International Conference on Intelligent Robots and Systems, Oct 2020, Las Vegas, United States. ⟨hal-02915271⟩

Partager

Métriques

Consultations de la notice

132

Téléchargements de fichiers

131