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A real-time unscented Kalman filter on manifolds for challenging AUV navigation

Théophile Cantelobre1, Clément Chahbazian2, Arnaud Croux2, Silvère Bonnabel3

Abstract— We consider the problem of localization and
navigation of Autonomous Underwater Vehicles (AUV) in the
context of high performance subsea asset inspection missions
in deep water. We propose a solution based on the recently
introduced Unscented Kalman Filter on Manifolds (UKF-M) for
onboard navigation to estimate the robot’s location, attitude and
velocity, using a precise round and rotating Earth navigation
model. Our algorithm has the merit of seamlessly handling
nonlinearity of attitude, and is far simpler to implement
than the extended Kalman filter (EKF), which is widely used
in the navigation industry. The unscented transform notably
spares the user the computation of Jacobians and lends itself
well to fast prototyping in the context of multi-sensor data
fusion. Besides, we provide the community with feedback about
implementation, and execution time is shown to be compatible
with real-time. Realistic extensive Monte-Carlo simulations
prove uncertainty is estimated with accuracy by the filter, and
illustrate its convergence ability. Real experiments in the context
of a 900m deep dive near Marseille (France) illustrate the
relevance of the method.

I. INTRODUCTION

Various industrial fields use Remotely Operated under-
water Vehicles (ROV) to inspect critical subsea assets, at
great cost. Thanks to recent progresses in telemetry and au-
tonomous systems, Autonomous Underwater Vehicles (AUV)
are currently being developed and deployed as a more cost-
efficient and capable solution. One such example is Schlum-
berger’s AUV project, displayed in Figure 1 and described
in Section V-A. However, many challenges remain before
ubiquitous adoption of AUVs in industrial use cases. One of
the most significant challenges is guidance and navigation,
as the capacity for the robot to localize itself and correctly
sense its environment is pivotal for autonomy.

Given an Autonomous Underwater Vehicle, the goal of
the present work is to estimate its position, velocity and
attitude (kinematic state) as well as the associated confidence
envelopes, in real-time and in challenging industrial condi-
tions where great accuracy is required. Although most high
grade inertial measurements units (IMU) come with built-in
(proprietary) navigation softwares, it proves important for the
roboticist to develop their own simple yet efficient navigation
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Fig. 1. Schlumberger’s untethered AUV platform used in the experiments.

code to keep grip on the onboard navigation system, whether
it be for fusion with other sensors, or in relation to other
modules such as motion planning, or LiDAR-based mapping.

A. Motivations

In spite of half a century of experience with the Extended
Kalman Filter (EKF), its implementation and tuning in the
context of high precision inertial navigation still requires
expertise, that can essentially be found inside companies that
manufacture high end IMUs. Following the work of Julier
and Ulhmann, [1], we believe an implementation based on
the unscented Kalman filter (UKF) is much more desirable
for the roboticist having limited experience in the field of
inertial navigation. Indeed, resorting to the UKF spares the
designer the computation of Jacobians, as required by the
EKF methodology (and the more recent smoothing based
methods [2]) which can be tedious, error-prone, and lack
versatility (changing the model slightly or the sensors might
require intensive re-computation).

Despite the EKF being well-established, it was shown
to suffer from inconsistent uncertainty estimates, see for
example [3], especially for fusion of IMU and vision.
This is an important consideration for practicing roboticists,
because a credible uncertainty estimate is crucial for filter
performance, see e.g., Section IV-B.2 and Reference [4].

B. Key contributions

In the present work, to accommodate for the nonlinearity
of the rotation matrices encoding the robot’s orientation,
we advocate the recently introduced UKF-M methodology,
see [5]. The complete solution we present here handles
both nonlinear state spaces and nonlinear dynamics, while
remaining simple to implement and to grasp. Moreover it
is shown to be compatible with the requirements of high



performance real-time subsea inspection in deep water. Our
contributions include:

1) Developing a complete Inertial Navigation System
(INS) based on the UKF-M achieving high accuracy,
consistency, and fast runtime performance required for
industrial deep water AUV use cases;

2) Showing the relevance of combining a precise round-
Earth kinematic model with the UKF-M in order
to guarantee robustness to dead reckoning, which is
essential during dive phases;

3) Developing an end-to-end navigation simulation frame-
work using ROS 2 to validate the performance of
the filter in simulation, and with experimental data
collected using the AUV platform shown in Figure 1;

4) The ROS 2 implementation provides modularity: the
same UKF-M code is seamlessly used for pure simu-
lation, in “hardware in the loop” mode, and onboard
as well. This approach allows speeding up the devel-
opment phase and improves testing methods.

C. Relation to prior literature

The body of work devoted to ROV and AUV navigation
is too broad to be covered here, see the surveys [6], [7].
However, solutions based on the UKF are scarce [6]. In [8],
a modified dual UKF is used for AUV localization. However
the application contrasts with our work owing to the use of
a low-cost IMU: the localization accuracy is hence low, the
navigation model is simplistic and does not account for round
and rotating Earth effects, and experiments are conducted in
shallow water (a test tank), where Euler angles are used,
which results in singularites [9]. The recent work [10]
presents an AUV based navigation system that utilizes the
UFK, and proves that the UKF has superior performance to
the EKF. However, the method and the context drastically
differ from ours. First, the dynamics rely on a simplified
physical model of the robot based on the rotational speed of
the motors related to the delivered thrusts which by nature
is too approximate to compete with high grade IMUs. This
model is completed with Xsens MTI IMU which is of much
lower grade than ours, and the orientation estimated by
the Xsens proprietary algorithm is used in the UKF, which
is undesirable at two levels: 1) we want to keep control
over the entire estimation pipeline, and 2) the proprietary
algorithm delivers highly suboptimal angles estimation as
it does not correlate the IMU with other available sensors
such as GPS, DVL, USBL, and depth, inevitably leading to
degraded performance. Finally, the tests are performed at a
few meters depth.

The rest of this paper is organized as follows. In Section II,
we present the round-Earth system model we use in our filter.
In Section III, we present our proposed UKF-M algorithm
and discuss its advantages over the industry standard, the
EKF. In Section IV, we present the simulation pipeline and
then demonstrate our algorithm’s performance using Monte
Carlo simulations using accuracy and consistency metrics.
In Section V, we show that the developed filter can run in
real-time using experimental data from the AUV platform.

II. SYSTEM MODEL AND SENSOR NOISE MODELS

In this section, we first present a precise, round-Earth
navigation model and then show how we can discretize it
accurately, along with models of the vehicle’s sensors.

A. Accurate Navigation Model

The retained state for the AUV consists of latitude, lon-
gitude and ellipsoidal altitude (L, λ, h) to describe position,
and navigation frame-relative velocity vnen and attitude Cnb .
Our model follows methods from the field of inertial navi-
gation and does not rely on any particular modelling of the
vehicle and its dynamics, i.e., only relies on the IMU signals.
Moreover, given the depth at which we aim to dive and the
overall length of the mission, we anticipate that the filter
accumulates a large amount of drift during the dive phase,
see Figure 3. As a result, we combine a high performance
inertial measurement unit (IMU) and a navigation model that
accounts for Earth rotation, curvature, and vertical gradient
and change in direction of the gravitational field.

1) Continuous-Time Navigation Equations: Following the
derivation in [11], state evolution equations can be written
as:

L̇ =
vnenN

RN (L) + h
, (1)

λ̇ =
vnenE

(RE(L) + h) cos(L)
, (2)

ḣ = −vnenD, (3)

v̇nen =Cnb f
b
ib − gnb (L, h)

−
(
Ωnen(L, vnen) + 2Ωnie(L)

)
vnen, (4)

Ċnb = Cnb Ωbib −
(
Ωnie(L) + Ωnen(L, vnen)

)
Cnb , (5)

where Ωbib and f bib are the rotation rate and acceleration from
the inertial frame to the body frame. The latter quantities are
measured (up to bias and noise) by the gyroscopes and the
accelerometers of the IMU, respectively. Let us detail our
notation which emphasizes the dependency of Earth model
quantities upon state variables.

gnb (L, h): model of gravity vector at the vehicle’s
position. The dependency in L and h is expected and due
to a model of the Earth’s shape, and of Earth’s gravitational
force decreasing with altitude, respectively.

Ωnie(L): model of the Earth’s rotation vector at the
vehicle’s position. The magnitude of the vector is constant,
but its direction depends on latitude L.

Ωnen(L, h, vnen): model of the vehicle’s transport rate,
i.e. the rotation caused by the movement of the tangent
navigation frame with respect to the Earth’s surface, because
of the vehicle’s movement. The transport rate thus depends
on the curvature at its position and thus on L and h, its
latitude and height.

Thus, our model aims to capture the full nonlinearities of
the system, without any first-order approximations.



2) Model Discretization: We now derive the discrete time
equations from the continuous-time model above in view
of our filter’s implementation. The inputs of this discrete
propagation step are thus: the previous state, the body frame
specific force f bib returned by accelerometers, the rotation
rate ωbib returned by gyroscopes (both up to bias and noise),
and the time step ∆t. From our experience, the key insight
brought by [11] is to integrate the equations in an order
that minimizes computations as variables computed can be
reused in the next equation. Experimentally, we have found
the following order to be the best.

In what follows, for each quantity z we denote z(−) the
current value, z(+) the propagated value. We denote αbib =
ωbib∆t and α = ||αbib||1.

a) Velocity: First, transform the specific force from
the body to the navigation frame fnib = C̄nb f

b
ib using an

intermediate frame transformation

C̄nb
def
= Cnb C

b−
b̄

(αbib)−
1

2
(Ωnie(−) + Ωnen(−))Cnb (−)∆t

Next, calculate vnen(+) in two steps, including the transport
and Coriolis terms.

vnen(+) = vnen(−)+∆tfnib + ∆tgnb (L(−), h(−))

−∆t

2
(Ωnen(−) + 2Ωnie(−))vnen(−)

(6)

−∆t

2

(
Ωnen(vn′en) + 2Ωnie(−))vn′en

where vnen
′ is a straightforward integration of Equation (4)

using fnib.
b) Longitude, latitude and height: from there, position

is computed using a second order integration method.

h(+) = h(−)− ∆t

2
(vnenD(−) + vnenD(+)) (7)

L(+) = L(−) +
∆t

2

vnenN (−)

RN (L(−)) + h(−)
(8)

+
∆t

2

vnenN (+)

RN (L(−)) + h(+)

λ(+) = λ(−) +
∆t

2

vnenE(−)

(RE(L(−)) + h(−)) cos(L(−))
(9)

+
∆t

2

vnenE(+)

(RE(L(+)) + h(+)) cos(L(+))

c) Attitude: Finally, attitude is propagated using the
previously computed quantities.

Cnb (+) =

(
I3 −∆t

(
Ωnie(−)−Ωnen(−) + Ωnen(+)

2

))
(10)

× Cnb (−)Cb−b+ (αbib)

1See [11] for other notations.

Note that this succession of equations defines a map f
such that if χ is the kinematic state and u the IMU inputs,
χn+1 = f(χn, un,∆t).

B. Sensor Errors

Much of the uncertainty in the model above stems from
the presence of noise in the IMU’s signals. However, IMU
sensor noises are very difficult to model. For this reason,
only a posteriori noise models exist, including [12], [13].
Based on manufacturer calibration information and an Allan
variance analysis [14] of our hardware, we concluded that
a biased, white noise model with covariance matrix Qin we
could compute from the specifications is sufficient, even for
hours long missions.

We made similar considerations for the other sensors used
in the mission, that is, Global Positioning System (GPS) at
the surface, Doppler Velocity Log (DVL), depth sensor, and
acoustic Ultra Short Base Line (USBL) positioning system
at the bottom.

III. UNSCENTED KALMAN FILTER ON MANIFOLDS FOR
AUV NAVIGATION

Given a kinematic model and noisy sensor outputs, our
goal is thus to fuse all the prior information we have about
our system (the kinematic and sensor models) with the sensor
data the robot measures. In our use case, we are faced with
two problems that make it difficult to apply the commonplace
Extended Kalman Filter (EFK).

1) Rotation-error handling: our state representation does
not lie in a vector space, but on a manifold owing to
the presence of rotation matrices (or quaternions) that
encode the attitude Cnb .

2) Complexity of the model: because we take into con-
sideration an Earth and gravity model, and because of
the precise integration scheme, deriving the Jacobian
of f as required in the EKF methodology is complex
and error-prone. Moreover, the slightest model modi-
fication requires to re-calculate Jacobians.

For these two reasons, we resort to the method proposed
in [5], the Unscented Kalman Filter on Manifolds, as the
back-bone of our data-fusion algorithm. The latter is a recent
variant of the UKF as introduced by Julier and Uhlmann
in [15], which accommodates for the nonlinear structure of
the model and of the state space, owed to the presence of
rotation matrices. In this section, we describe the algorithm,
the design choices we made and how it handles the two
issues described above.

A. Application of UKF-M to the present problem

In order to use the machinery of UKF-M to accommodate
rotation matrices, we naturally define the manifold in which
the state χ = (L, λ, h, vnen, C

n
b ) lives asM = R6×SO3(R).

This choice is also relevant becauseM has a trivial Lie group
structure, see [16]. The second ingredient of the method is
the choice of a retraction ϕ :M×R9 →M that we define



as

ϕ(χ, ξ) =


L+ ξ1
λ+ ξ2
h+ ξ3

vnen + ξ4:6

Cnb exp(ξ7:9)
)

 (11)

which leads us to define ϕχ(χ̃)−1 def
=

(
χ̃1:6 −

χ1:6, logSO(3)(χ
−1
7:9χ̃7:9)

)
, where we have defined the

expSO(3) and logSO(3) maps on SO3(R) as in [17]. This
allows one to define an UKF despite the fact the state space
is a manifold which includes rotation matrices. Indeed, the
key observation is that ϕ−1

χ (χ̃) ∈ R9 defines a (vector) error
between state χ̃ and state χ. Note that, recent works have
advocated the use of a more sophisticated Lie group for
navigation (and hence a different map ϕ), in the context
of invariant filtering [18]. The potential benefits of such a
choice are left for future work, though.

B. Uncertainty Representation

In the UKF-M methodology, the statistical belief about
the state is represented as ϕ(χ, ξ) with χ the mean or
average estimate, and ξ ∼ N (0, P ) a centered Gaussian with
covariance matrix P that reflects statistical dispersion, and
where ϕ is the chosen retraction, in our case (11). This may
be related to the notion of concentrated Gaussian, see [19],
[20], when the state is a Lie group.

C. Proposed Algorithm

We now present our application of the UKF-M algorithm
and how it handles model nonlinearities in a derivative-
free manner. The main idea behind the UKF-M is to use
sigma-points as in the UKF methodology [15] to capture the
nonlinearities in the model. These sigma-points statistically
linearize the model instead of using an analytic expression
of the Jacobian, as required by the EKF. The UKF-M
iterates the two following steps over time: (i) propagation
(of the distribution through the dynamics), and (ii) update
(re-estimation of the distribution in the light of observations).

1) UKF-M: Propagation step: In the UKF-M framework,
the mean χ is propagated directly through the system’s
equations described in Section II-A.2, as in the standard
EKF and in contrast with the canonical UKF methodology.
The motivations are as follows: (i) because they do not
lie on a vector space, averaging rotation matrices would
greatly increase the complexity of the algorithm [21], (ii)
with mean propagation separate from covariance propagation
in dead reckoning, the filter is more stable. Indeed, in dead
reckoning, covariance divergence occurs due to a corollary
of the Schuler effect [11], and in turn degrades the mean
propagation if the canonical UKF methodology is used.

By contrast, to propagate the uncertainty estimate, sigma
points over state and input variables are used. This presents
three advantages: (i) it captures second order terms [22],
(ii) it avoids error-prone Jacobian calculations [1], and
(iii) it eliminates the difficult to compute (or arbitrary [1])
propagation noise matrix, essentially eliminating a matrix

hyperparameter. The UKF-M propagation step is summarized
in Algorithm 1.

Algorithm 1: UKF-M: propagation step
Input : χn, Pn, un, ∆t, Qin
Parameters: α, d = dim(χn), λ(d) = d(α2 − 1)
// Mean propagation
χ+
n+1 = f(χn, un,∆t) with f from Section II-A.2;

// State Sigma-point calculation
ξi = coli(

√
d+ λ(d)

√
Pn), 1 ≤ i ≤ d;

ξd+i = −coli(
√
d+ λ(d)

√
Pn), 1 ≤ i ≤ d;

// State Covariance propagation
εi = ϕ−1

χ+
n+1

(
f(ϕ(χn, ξi))

)
, 1 ≤ i ≤ 2d;

P sn+1 =
∑2d
i=1 wiεiε

T
i ;

// Noise Sigma-point calculation
ξ′i = coli(

√
6 + λ(6)

√
Qin), 1 ≤ i ≤ 6;

ξ′6+i = −coli(
√

6 + λ(6)
√
Qin), 1 ≤ i ≤ 6;

// Noise Covariance propagation
ε′i = ϕ−1

χ+
n+1

(
f(ϕ(χn, ξi))

)
, 1 ≤ i ≤ 12;

Pnn+1 =
∑12
i=1 wiε

′
iε
′T
i ;

Result: χ+
n+1, P+

n+1 = P sn+1 + Pnn+1

2) UKF-M: update step: With the introduction of sensor
noise from the IMU, the uncertainty obtained during propa-
gation (called dead reckoning) grows over time. This can be
observed, for example, in Figure 3. Algorithm 2 describes
how the UKF-M refines the state estimate χ and associated
uncertainty P in the light of measurements. In the following,
observations are assumed to be of the following form:

∀t ≥ 0, y(t) = h
(
χ(t)

)
+ n(t) (12)

where h is a known map and n is white noise. This may
represent DVL, acoustic positioning, and more generally all
readings from sensors of the AUV.

As is usual in data fusion, the state vector can be extended
to include parameters such as model biases. This allows easy
calibration of IMU biases, for example, see Figure 5.

D. Numerical Aspects

While less accurate and consistent than the UKF [3][22],
the EKF still prevails in the navigation industry because the
former is considered as more challenging numerically.

1) Runtime performance: A straightforward application
of the UKF methology implies running Algorithm 1 at high
frequency (typically 100 Hz), with 2d + 1 forward model
evaluations and a matrix square root computation. This is
often considered prohibitive on standard hardware. However,
we show that in the context of industrial-grade navigation
systems for AUVs, the UKF-M is a feasible solution. We
observed a 40× margin compared to real-time, with full
state updates. Our runtime evaluations are summarized in
Table I. The experiments were executed on a Intel Core
i7-8850H CPU (2.60GHz) akin to embedded Intel NUC
boards. We believe it is a contribution of this work to the
robotics community to have shown that the UKF-M’s simpler



Algorithm 2: UKF-M: update step

Input : χ+
n+1, P+

n+1, un+1, h
Parameters: α, d = dim(χn), λ(d) = d(α2 − 1)
// Sigma-point calculation

ξi = coli(
√
d+ λ(d)

√
P+
n+1), 1 ≤ i ≤ d;

ξd+i = −coli(
√
d+ λ(d)

√
P+
n+1), 1 ≤ i ≤ d;

// Mean and sigma-point prediction
y0 = h(χ+

n+1);
yi = h(ϕ

(
χ+
n+1, ξi

)
), 1 ≤ i ≤ 2d;

// Mean calculation

ŷ =
∑2d
i=0 w

s
i yi;

// Covariance calculation

Pyy =
∑2d
i=0 w

c
i (yi − ŷ)(yi − ŷ)T ;

// Cross-covariance calculation

Pχy =
∑2d
i=1 w

c
i ξi(yi − ŷ)T ;

// Covariance update
K = PχyP

−1
yy ;

Pn+1 = P+
n+1 −KPyyKT ;

// Mean update
χn+1 = ϕ

(
χ+
n+1,K(yn+1 − ŷ)

)
;

Result: χn+1, Pn+1

implementation can actually be leveraged in practice without
sacrifying runtime performance.

TABLE I
RUNTIME PERFORMANCE.

Mission type Mission length (s) fs IMU (s) Runtime (s)
Full navigation 1945 100 Hz 45.6
Full navigation 1945 10 Hz 4.6
Propagation only 1945 100 Hz 32.4
Propagation only 1945 10 Hz 3.3

2) Rotation matrix stability: In the navigation and aero-
nautics literature and industries, it is customary to use
quaternions in place of rotation matrices2. However, the use
of rotation matrices is common among roboticists. We found
that by applying Gram-Schmidt normalization to Cnb when
necessary, our performance was indistinguishable from that
of a quaternion-based system.

IV. REALISTIC NUMERICAL EXPERIMENTS

In AUV applications, especially subsea asset inspection
in the Oil & Gas industry where robots may operate in
deep water, ground truth is very costly - if not impossible
- to obtain, especially during the design stage. We thus
made extensive use of a simulation framework built on the
ROS 2 [24] middleware to develop and test the algorithm.
This allows us to assess accuracy, consistency, and runtime
performance of the filter.

2For an UKF implementation of attitude-only estimation using quater-
nions, see the USQUE algorithm in [23].

A. Simulation pipeline

As part of the design and the implementation of the
navigation algorithm we presented above, we developed an
end-to-end simulation pipeline. From a concise description
of the trajectory, it simulates the vehicle’s sensors and,
using ROS 2 as a middleware, runs the navigation algorithm
against this data. Our simulation framework is composed of
ROS 2 nodes, and can be presented in four layers:

1) Ground truth trajectory generation, based on the open-
source GNSS INS Sim package3;

2) Sensor simulation nodes, which use the ground truth
trajectories to generate sensor output, taking into con-
sideration sensor visibility aspects;

3) UKF-M node, which estimates the vehicle’s state and
associated uncertainty from simulated sensor output;

4) Finally, real-time visualization and diagnostics relying
on a Postgres database interfaced with a Grafana
dashboard.

This approach has several advantages including: (i) it is
modular and interactive: it can easily be extended to include
new sensors, physical model or vehicle behaviors or decision
making capabilities; (ii) it simulates many of the challenges
of real-time navigation, such as delays and message loss; (iii)
it is compatible with Hardware-in-the-loop simulation in a
Digital avatar in a lab or testing onboard a vehicle, such
as onboard Schlumberger’s Sabertooth platform described in
Section V-A.

B. Monte Carlo Experiments and Evaluation Metrics

In order to rigorously evaluate our model and our algo-
rithm, we simulated the navigation system presented above
on a realistic inspection-type mission, using Monte Carlo
simulations. We draw N different noise realizations over the
input data (IMU, depth sensor, GPS, DVL and USBL) and
run the algorithm against these N realizations. The output of
the different runs χi(t) allow us to evaluate the algorithm’s
performance according to two criteria: its accuracy and its
consistency. These simulations were run on a variant of the
above pipeline compatible with parallel simulation, using
GNU Parallel [25].

The metrics we use to assess filter’s performance are:
1) Accuracy through Standard Deviation: We measure

the dispersion of the different runs, i.e. the risk we take
by accepting to use one of the trajectories as our mean
trajectory. For this, we denote σN (t) the standard deviation
of the different runs’ estimates at time t.

2) Consistency through Normalized Estimation Error
Squared (NEES): One of our algorithm’s desirable properties
is the quality of its uncertainty estimate. This is paramount
as it impacts the quality of the estimation later during the
mission for the two following reasons. First, as presented
by Y. Bar-Shalom, in [4], “wrong covariances yield wrong
gains”, which in turn may degrade performance. This is espe-
cially true in navigation, where it is customary to propagate
at high frequency (typically at f IMU

s = 100 Hz) and update

3https://github.com/Aceinna/gnss-ins-sim



less frequently (typically at fGPSs = 1 Hz). Second, the
uncertainty estimate P is a quantity that can be used as
input to other algorithms, especially for motion planning
and resulting decision making on board the vehicle (for
example, to safely approach subsea infrastructure during an
inspection mission). Finally, uncertainty may also be used
when correlating feeds from imaging sensors [26], and our
AUV is also equipped with LiDAR for survey purposes.

We define the Normalized Estimation Error Squared
(NEES) for each trajectory χi(t) and uncertainty estimate
P i(t), comparing the estimated uncertainty to the estimation
error [4][27]. Formally, if ξG(t) is the ground truth trajectory
and ξi(t) is an estimated trajectory with associated uncer-
tainty P i(t), then εi(t) = ϕ−1

χG(t)

(
χi(t)

)
is the estimation

error. The NEES is defined by:

νi(t)
def
=

1

d
εi(t)TP i(t)−1εi(t) (13)

We can then define the Average NEES (ANEES) over the
different trajectories, ν(t)

def
= 1

N

∑N
k=1 ν

i(t).
To ensure we have a reliable uncertainty estimate, ν(t)

should be around 1: if ν > 1, the uncertainty is overesti-
mated; otherwise, it is underestimated.

TABLE II
SENSOR VISIBILITY ON INSPECTION MISSION

Phase IMU GPS Depth DVL USBL
Calibrate 3 3 7 7 7
Dive 3 7 3 7 7
Survey 3 7 3 3 3

Fig. 2. Longitude error (m) during the calibration phase. Despite the
calibration process, the estimates are stable and the uncertainty well-
estimated.

C. Simulation Mission Design

We evaluated our model and algorithm against a realistic
inspection mission, a dive and survey mission (DAS). The

Fig. 3. Longitude error (m) during the dive phase. Note that the uncertainty
in the estimate is well predicted by

√
P (t).

Fig. 4. Longitude error (m) during the survey phase after large drift has
been accumulated in the dead reckoning dive phase. This illustrates the
filter’s convergence properties owed to the consistent uncertainty estimation
during dead reckoning.

mission can be divided into three successive parts described
below. Conservative hypotheses are assumed with respect to
sensor visibility and performance, summarized in Tables II
and III respectively. These characteristics reflect those of the
robot displayed in Figure 1.

1) Surface calibration: At the surface, the vehicle cali-
brates its IMU biases by executing figure-eights, with only
GPS visible. Note that no special behavior is imparted to the
filter during this calibration phase, it runs identically to the
other phases.

2) Dive: Dive from the surface to 1200 meters depth at
a 80 degree incline. Only the depth sensor is available.

3) Survey: At 1200 meters depth, level and execute a
high-altitude survey over equipment in a lawnmower pattern.
Depth, DVL and USBL sensors are then all available.

D. Results

To analyze the performance of our framework, we use the
two metrics defined in Section IV-B:



Fig. 5. Accelerometer bias estimate (m/s2) during the calibration phase.
The horizontal red dashed line is the true bias parameter 0.004m.s−2, and
we see it is fully recovered. Note that the convergence

√
P (t) to 0 can be

used to mark the end of the calibration phase.

Fig. 6. NEES over the mission. At the beginning of the mission, uncertainty
is overestimated but the NEES rapidly converge towards 1. At each change
in navigation regime, the NEES becomes very large for a few seconds, the
time for the filter to converge. It quickly converges back to 1 (red dashed
line). The black curve is the ANEES and the grey envelope the dispersion
of the NEES trajectories as defined in Section IV-B.2, over N = 48 runs.

• to evaluate consistency: in Figure 6, we compare ν(t) to
1 and verify that the spread of the νi(t) are reasonable;

• to evaluate accuracy: in Figures 2-4, we show the
1−σN (t) envelope for the different estimated trajec-
tories, and compare them to our estimated uncertainty√
P i(t)4. In these figures, the grey envelope is between

±σN (t) and the black lines are the estimated covariance√
P (t), for N = 48 runs.

The results illustrate several desirable properties of the
algorithm:

1) Overall performances: Figures 2-6 show that our filter
achieves metric accuracy and is consistent, on a realistic deep
water inspection-type mission, including an (auto) calibration

4Note that although the P i(t) are date-dependent, in practice their
dispersion is negligible, so any P i(t) can be used.

phase where IMU biases are recovered.
2) Robustness to dead-reckoning: Figure 3 shows that the

accumulated dispersion is only 200 m after 15 minutes of
dead reckoning of diving.

3) Convergence property: Figure 4 illustrates filter con-
vergence: the filter recovers the correct position thanks to
DVL and USBL updates, despite dispersion incurred during
dead reckoning dive. This also emphasizes the importance
of a consistent uncertainty estimate which yields correct
Kalman gains. Note that these results are obtained using
nominal noise models, without so-called “robust learning”
or “stabilizing noise” [1] which helps the filter to converge
and combat the nonlinearities but ultimately degrades per-
formance, since it is based on erroneous noise statistics.

4) Sensor bias integration: Figure 5 shows how sensor
biases can be observed with great confidence executing
a simple maneuver during a short period of time. More
importantly, one can use the convergence of the bias un-
certainty (the

√
P (t) envelope) to detect the bias estimate’s

convergence.
5) Consistency: Finally, Figure 6 shows that the ANEES

is reliably close to 1 during the mission, except when there
are transitions in sensor visibility. The ability of the filter
to very accurately convey its uncertainty is key notably for
motion planning during inspection and maintenance.

TABLE III
SENSOR CHARACTERISTICS

Sensor fs (Hz) Noise model Bias model

Gyroscope 100 Hz 0.012 deg/
√
hr 2 deg/hr

Accelerometer 100 Hz 0.0141 m.s−1.hr−1/2 4.10−3m/s2

Depth 1 Hz 1.0 m -
GPS 1 Hz 2 m -
DVL 1 Hz 5 mm/s -
USBL 1/60 Hz 5 m, 5 m, 0.1 m -

V. EXPERIMENTAL VALIDATION

In order to show that the INS presented in this work can be
used onboard an AUV, we evaluated it against data collected
in the field by Schlumberger with the AUV displayed in
Figure 1 and described below. Our experiments show that
without algorithm adaptation, we obtain a credible estimate
of the AUV’s position.

A. Experimental Platform & Data Collection

The platform used to collect the data is an untethered
AUV, developed by Schlumberger within a wider multi-
agent autonomy system for subsea asset inspection. Based
on Saab’s Sabertooth platform, the AUV features a standard
underwater navigation sensor suite including: a high-grade
IMU, Doppler Velocity Log (DVL), depth sensor, GPS, and
Ultra-Short Baseline (USBL) acoustic postioning system.
Sensors’ characteristics are summarized in Table III.

The AUV was used to capture IMU, GPS, DVL, USBL
and depth data from the sensor suite in order to evaluate the
framework presented above. The mission was executed off



the coast of La Ciotat (France) and is similar to the one used
for simulation. In particular, it includes a dive as well as a
survey at around 900 meters depth.

Fig. 7. Estimated trajectory on experimental data captured using Schlum-
berger’s AUV. USBL used in the update step are materialized (red crosses).

B. Results & Discussion

Runnning against this data, we showed that our INS
system was capable of reproducing the performance achieved
in simulation, in real-time, and with comparable performance
to the simulation results.

Figure 7 shows the longitude estimate over an extract
of the estimated trajectory, during the survey phase at the
around 900 meters depth. During that segment, the IMU,
DVL, and USBL sensors are available. In Figure 7, USBL
datapoints are represented by red crosses. They show that
despite the filter being initialized erroneously, the filter
converges through USBL and DVL updates.

VI. CONCLUSION

Our work shows that our UKF-M-based navigation solu-
tion can be used in real-time, while attaining high accuracy
and consistency on challenging, sensor-denied missions. Fur-
thermore, we showed that it is robust to dead-reckoning and
to sensor biases. These results have been shown to hold in
simulation and on experimental data from various sensors
(high-grade IMU, DVL, and USBL) in the context of a real,
challenging 900 m deep mission.

In future work we plan to (1) integrate perception-based
updates to the navigation system, and (2) develop manoeu-
vres to re-calibrate underwater.
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