Kernel Regression for Vehicle Trajectory Reconstruction under Speed and Inter-vehicular Distance Constraints - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année :

Kernel Regression for Vehicle Trajectory Reconstruction under Speed and Inter-vehicular Distance Constraints

(1, 2) , (2) , (3)
1
2
3

Résumé

This work tackles the problem of reconstructing vehicle trajectories with the side information of physical constraints, such as inter-vehicular distance and speed limits. It is notoriously difficult to perform a regression while enforcing these hard constraints on time intervals. Using reproducing kernel Hilbert spaces, we propose a convex reformulation which can be directly implemented in classical solvers such as CVXGEN. Numerical experiments on a simple dataset illustrate the efficiency of the method, especially with sparse and noisy data.
Fichier principal
Vignette du fichier
pca.pdf (592.92 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03021643 , version 1 (24-11-2020)

Identifiants

  • HAL Id : hal-03021643 , version 1

Citer

Pierre-Cyril Aubin-Frankowski, Nicolas Petit, Zoltán Szabó. Kernel Regression for Vehicle Trajectory Reconstruction under Speed and Inter-vehicular Distance Constraints. IFAC 2020 World Congress, Jul 2020, Virtuel, Germany. ⟨hal-03021643⟩
39 Consultations
42 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More