
HAL Id: hal-03021760
https://minesparis-psl.hal.science/hal-03021760

Submitted on 24 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generalized control law for uniform, global and
exponential magnetic detumbling of rigid spacecraft

Nicolas Petit, Ioannis Sarras

To cite this version:
Nicolas Petit, Ioannis Sarras. A generalized control law for uniform, global and exponential magnetic
detumbling of rigid spacecraft. IFAC 2020 World Congress, Jul 2020, Virtuel, Germany. �hal-03021760�

https://minesparis-psl.hal.science/hal-03021760
https://hal.archives-ouvertes.fr


A generalized control law for uniform, global
and exponential magnetic detumbling of

rigid spacecraft

Nicolas Petit ∗ Ioannis Sarras ∗∗

∗ Centre Automatique et Systèmes, MINES ParisTech, PSL, Paris,
France (e-mail: {nicolas.petit} @mines-paristech.fr).

∗∗DTIS, ONERA, Université Paris-Saclay, F-91123 Palaiseau, France
(e-mail:{ioannis.sarras}@onera.fr)

Abstract: The problem of magnetic detumbling, also known as magnetic momentum unloading,
is considered. The objective is to stabilize a rigid spacecraft angular velocity to zero only
through magnetic actuation, i.e. magneto-torquers. We propose a generalized control law that
is uniformly, globally exponentially stabilizing (UGES) and show that the celebrated b-dot law
is one particular case of this law. Furthermore, we provide an explicit (time-varying) strict
Lyapunov function to establish the stability claim.
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1. INTRODUCTION

The last couple of decades have seen an astonishing series
of achievements in aerospace science and technology, such
as the increased deployment of reusable launch vehicles
and nano-satellites, that have marked the beginning of
an exciting new space era. These developments have led
to the definition of new mission scenarios that necessitate
more efficient hardware components and robust algorithms
which however should not increase the overall system com-
plexity and cost. Such requirements influence directly one
of the most critical components for the precise operation
of a spacecraft. This is the attitude control system (ACS)
that ensures the active attitude stabilization and distur-
bance rejection. The first immediate task of the ACS after
launch is to detumble the spacecraft, i.e. drive all angular
velocities to zero.
Through the decades there has been a variety of ap-
proaches for the design of ACS. One of the most robust and
efficient way has been through the use of electromagnetic
actuators, which have shown to be very suitable for low
Earth orbit (LEO) satellites. The underlying principle for
the operation of these actuators hinges upon the inter-
action between a set of three orthogonal, current-driven
magnetic coils (a.k.a. magneto-torquers) and the magnetic
field of the Earth, see Wertz (1978). The exploitation
of this physical phenomenon leads naturally to a simple
solution to the problem of torque generation on board a
spacecraft.
For such actuators, the only noticeable limiting factor ap-
pears to be the fact that the generated control torques are
constrained to lie in the plane orthogonal to the magnetic
field vector. This implies that complete controllability is
possible only on the average and dependent on the variabil-
ity of the geomagnetic field. This condition depends con-
siderably on the inclination of the selected orbit; in equato-
rial orbit dynamics is almost uncontrollable as controllabil-

ity characteristics tend to improve with orbit inclination,
see for example Wiśniewski and Blanke (1999); Silani and
Lovera (2005). Despite this drawback, for a number of mis-
sions the advantages of magnetotorquers are undeniable
and have been already exposed in Stickler and Alfriend
(1976); Avanzini and Giulietti (2012); Silani and Lovera
(2005); Lovera and Astolfi (2004, 2005); Lovera and Astolfi
(2006) among other works. Essentially, these are simple,
cheap and reliable actuators as they do not have any
moving or hydraulic parts, require only renewable electric
power for (almost limitless) operation and do not present
any unrecoverable failure modes. We refer to Ovchinnikov
et al. (2018); Ovchinnikov and Roldugin (2019) for an ex-
position of recent use cases and to Zamorano et al. (2017);
Rodríguez-Rojo et al. (2019) for particular application on
CubeSats.
While there is an important literature on the attitude con-
trol of spacecraft with only magnetic actuators, see Stick-
ler and Alfriend (1976); Wiśniewski and Blanke (1999);
Psiaki (2001); Silani and Lovera (2005), there has been
only recently a focus on the crucial detumbling phase.
The most noticeable works are Lovera (2015); Avanzini
and Giulietti (2012); Ahmed and Kerrigan (2014). These
works essentially exploit (variations) of the well-known b-
dot law which allows to detumble the spacecraft using
only the available magnetic field measurement b(t), and
its approximate derivative ḃ(t), while avoiding the use of
any angular rate measurements. Despite this evident ad-
vantage of requiring a minimum amount of measured infor-
mation, these controllers, and their corresponding closed-
loop systems, have shown to be difficult to analyze from a
stability viewpoint. This is essentially due to two facts: 1)
the time-derivative of the magnetic field measurement b(t)
depends on the time-derivative of its corresponding vector
bi(t) expressed in inertial coordinates; 2) the presence of
the Coriolis term in the Euler equations. For the latter,
works such as Lovera (2015); Avanzini and Giulietti (2012)



assume that this term is negligible while for the former
either that ḃi is another negligible term or that it has a
particular form. As such, these works provided proofs of
(non-uniform) global asymptotic stability based on non-
strict Lyapunov functions and application of appropri-
ate versions of Barbalat’s lemma (Avanzini and Giulietti
(2012)) and LaSalle’s invariance principle for periodic sys-
tems, along with averaging theory (Lovera (2015)).
As already mentioned, these b-dot control laws require
essentially only the measurement of the vector b(t). Apart
from the simplicity of such approach, the design was based
on the idea that angular velocity information cannot be
reconstructed from vector measurements and in particu-
lar from magnetic field measurements, as pointed out in
Lovera (2015). However, recently there have been advances
on angular velocity estimation directly from (single or
multiple) vector observations obtained from Sun sensors,
star trackers or magnetometers. In particular, the case of
multiple (more than 2) vector measurements was studied
in Magnis and Petit (2016) while the results on the single
measurement scenario were reported in Magnis and Petit
(2017). In this latter work, it is shown that the tumbling
dynamics (free rotation) is, in almost all cases (i.e. except
for initial conditions belonging to a set having measure
zero), satisfying a persistency-of-excitation condition. In
both these works, nonlinear observers are designed and
semi-global uniform asymptotic and local exponential sta-
bility is established using (non strict) Lyapunov functions
and results on uniform complete observability of linear
time-varying (LTV) systems. In the case where attitude
measurements are already available, it is of course well
known from the seminal work Salcudean (1991) how a
convergent angular estimate can be reconstructed. See also
Berkane et al. (2016) and references therein for some recent
designs under this scenario.
In this work we wish to exploit these recent developments
on the estimation of a rigid body’s angular velocity from
vector observations, and in general the possible availability
of the angular velocity, for the control design. The main
contribution of this work is thus to propose a generalized
control law for magnetic detumbling for which we can
establish uniform global exponential stability (UGES) of
the origin. We show that a particular case of our law is
the celebrated b-dot law while for the other possible laws
the implementation requires measurements of the angular
velocity that can be considered available based on the
advances mentioned previously. The stability proof hinges
upon the explicit construction of a strict (time-varying)
Lyapunov function as is done for classes of persistently
excited nonlinear time-varying systems, see Malisoff and
Mazenc (2009); Maghenem and Loría (2017).
To the authors’ knowledge this is the first result in the
literature that establishes such stability characteristics,
even for the b-dot law. The paper runs as follows: the
model used in the control design is described in section 2
along with our main working assumption; the proposed law
is presented in section 3 along with a detailed Lyapunov
analysis that establishes UGES. Finally, we discuss some
extensions (saturation, regulation) and perspectives.

2. PROBLEM FORMULATION – MODEL

The measurement of the Earth’s magnetic field in the body
frame is denoted as b(t) with a known bound |b(t)| ≤ cb.

The corresponding vector in the inertial frame is given as
bi(t). These vectors are related using the rotation matrix
R(t) ∈ SO(3) through the relation

bi(t) := R(t)b(t). (1)
Naturally, the dynamics of the magnetic measurements
can be expressed, using the attitude dynamics Ṙ = Rω×

1 ,
as

ḃ = b× ω +RT ḃi. (2)
In addition, we consider the dynamic evolution of the
angular velocity through the Euler equations

Jω̇ = (Jω)× ω + b× τ , (3)
with J the constant, symmetric inertia matrix, ω the
angular velocity expressed in the body frame and τ the
control input.
In summary, the dynamics under consideration are 2

ḃ = b× ω +RT ḃi (4)
Jω̇ = (Jω)× ω + b× τ. (5)

The following working assumption will be adopted for the
magnetic field in the inertial frame.
Assumption 1. The considered orbit for the spacecraft
satisfies

1
T

∫ t+T

t

bi×(σ)bTi×(σ)dσ � µI � 0, (6)

for some T > 0, µ > 0 and ∀t ≥ 0.

As mentioned in Lovera (2015), this assumption is only
mildly restrictive and can be easily verified that it holds
for most orbits of practical interest for LEO spacecraft.
For example, in the case of a satellite orbiting the Earth,
the assumption can be explored, depending on the various
parameters of the orbit. Typical results obtained for a
variety of orbital elements are reported in Table 1. The
results were obtained using the simulation software pack-
age PROPAT Carrara (2015) which includes the IGRF11
model for Earth’s magnetic field, defined by the IAGA (In-
ternational Association of Geomagnetism and Aeronomy).
As performance index, the following normalized parame-

ter is considered: Index :=
λmin(

∫ Torbit
0

bi×(σ)bT
i×(σ)dσ)∫ Torbit

0
‖bi(σ)‖2dσ

. As

clearly appears, inclined orbits with low-altitude are more
favorable with respect to the assumption. In this model, an
equatorial orbit features a low index. Obviously, the GEO
geo-synchronous orbit, which features a constant magnetic
field as the position of the orbiting elements is constant
relative to the Earth, has a null performance index.

3. MAIN RESULT

In this work, and as opposed to the other works in the
literature, our control design will be solely based on the
Euler equations (3) and Assumption 1.
Consider now the control law

τ := kb× (Mω) (7)

1 The matrix y× is the skew-symmetric matrix associated to any
vector y ∈ R3, and is defined simply through the cross-product
y×x := y × x for any x ∈ R3.
2 We drop the explicit dependence on time when it is clear from the
context.



Table 1. Index relative to Assumption 1, for various orbits

Orbit type semimajor axis
(km)

eccentricity inclination (deg) Index

LEO Non-inclined 150 0 0 0.07
LEO Inclined 150 0 30 0.44
LEO Inclined 150 0 60 0.28
LEO Polar 150 0 90 0.22
LEO Sun-Sync 150 0 98 0.22
LEO Sun-Sync 900 0 98 0.22
LEO Inclined non-polar 340 0 51.8 0.34
LEO Near-polar non-sun-sync 450 0 80 0.22
LEO Near-polar non-sun-sync 800 0 80 0.22
MEO Semi synchronous 20000 0.01 55 0.32
GEO Geo-synchronous 35786 0 0 0.00

with the scalar gain k > 0. This law is parameterized by
the positive-definite matrix M = MT � 0, that is to be
chosen accordingly. The closed-loop system (3),(7), reads

Jω̇ = (Jω)× ω + kb2×(Mω). (8)
Taking the new momenta vector

Ω := RJω, (9)
the resulting dynamics takes the form

Ω̇ = kRb2×MJ−1RTΩ, (10)
which since Rb2×RT = −Rb×bT×RT = −Rb×RTRbT×RT =
−Rb×RT (Rb×RT )T = −(Rb)×(Rb)T× = −bi×bTi×, results
in the following closed-loop system

Ω̇ = −kbi×bTi×RMJ−1RTΩ. (11)
We will essentially define a class of control laws through
the selection of the gain matrix M .
Remark 2. We refer to the aforementioned laws as a class
of controllers as, similarly to what is done in the literature,
and apart from the selection of M , we can obtain different
scaled/normalized versions of these laws. Such a law is
derived later when we consider control saturations.

The main result of this work is summarized in the follow-
ing, under conditions on the persistence constant µ that
will be explicited in the proof.
Proposition 3. The closed-loop dynamics (11) withM := I
or M := J is UGES at the origin.

Proof. The first step of the proof is to show that for the
above choices we can establish uniform global stability
of the origin. To this end consider the positive definite,
radially unbounded function

V1(Ω, t) := 1
2ΩTR(t)MJ−1RT (t)Ω. (12)

Calculating its time derivative along the closed-loop tra-
jectories yields

V̇1 = 1
4ΩTR

(
(J−1RTΩ)×MJ−1 +MJ−1(J−1RTΩ)T×

)
RTΩ

− kΩTRMJ−1RT bi×b
T
i×RMJ−1RTΩ. (13)

Now, in order to establish uniform boundedness of the
trajectories ω(t), and without imposing any a priori bound
on ω(t), it is necessary that the first term cancels out.
This is exactly so for the two choices of the matrix M :
1) M = I, which recovers the classic b-dot law; 2) M = J ,
that generates another class of control laws.
For both of these cases, i.e. M = I and M = J , we then
obtain V̇1 = −kΩTRJ−1MRT bi×b

T
i×RMJ−1RTΩ ≤ 0,

which establishes V1(Ω(t), t) ≤ V1(Ω(t0), t0) and proves
uniform global stability of the origin. Hence, we get bound-
edness of Ω(t), |Ω(t)| ≤ cΩ (cΩ depending on the initial
conditions and which is a priori practically fixed), and
equivalently of ω(t) with |ω(t)| ≤ cω. The second step is to
construct a strict Lyapunov function. Our approach hinges
upon the construction of a strict Lyapunov function as is
done following the recent works of Malisoff and Mazenc
(2009) and Maghenem and Loría (2017) for persistently-
excited linear time-varying systems.
To this end, we propose the positive definite, radially
unbounded function

V (Ω, t):=ρ1V1 + ΩTRJ−1MRTP (t)RMJ−1RTΩ(14)
P (t) :=(1 + c2b)TI

− 1
T

∫ t+T

t

∫ t

s

bi×(τ)bTi×(τ)dτdσ, (15)

with ρ1 > 0 to be properly selected. First of all, we can
show after straightforward calculations that the positive
definite matrix P (t) satisfies

TI � P (t) � (1 + c2b)TI (16)

Ṗ = − 1
T

∫ t+T

t

bi×(τ)bTi×(τ)dτ + bi×(t)bTi×(t). (17)

Its time-derivative along trajectories of the closed-loop
system results in

V̇ ≤ −µΩTRJ−1MMJ−1RTΩ
− (ρ1k − 1)ΩTRJ−1MRT bi×b

T
i×RMJ−1RTΩ

− 2kΩTRJ−1MRTPRMJ−1RT bi×b
T
i×RMJ−1RTΩ

+ 2ΩTR
(

(J−1RTΩ)×J−1MRTPRMJ−1

+ J−1M(J−1RTΩ)T×RTPRMJ−1
)
RTΩ.

At this point notice that, for general (symmetric, positive
definite) matrices M , the first two quadratic terms in V̇
are negative (semi-)definite, the third term is quadratic
in Ω and can be dominated by the first two, while the
last term is problematic to establish uniform exponen-
tial/asymptotic stability of the origin. However, for the
choices of interest, i.e.M = I andM = J , we have already
been able to prove uniform boundedness of Ω(t) and can
incorporate this bound to establish the desired stability
margins. Moreover, when that M = J straightforward
calculations show that the last term in V̇ cancels out since



ΩTR
(

(J−1RTΩ)×J−1MRTP (t)RMJ−1

+ J−1M(J−1RTΩ)T×RTP (t)RMJ−1
)
RTΩ

= ΩTR
(

(J−1RTΩ)× − (J−1RTΩ)×
)
RTP (t)Ω = 0.

As a result, for this case, it is not required to use the bound
on Ω(t) to conclude uniform global exponential stability.
This seems to be, at least from a pure stability viewpoint,
an advantage of the modified control law with respect to
the classic b-dot law.
We continue now with the procedure of bounding V̇ . Tak-
ing from where we left off and by applying Young’s inequal-
ity ab ≤ εa2

2 + b2

2ε with a := bTi×RMJ−1RTPMJ−1RTΩ
and b := kbTi×RMJ−1RTΩ, with the bound from (6) and
the known bounds on ω(t) (equivalently Ω(t)), bi(t) and
P (t) we obtain
V̇ ≤ −µΩTRJ−1MMJ−1RTΩ
− (ρ1k − 1)ΩTRJ−1MRT bi×b

T
i×RMJ−1RTΩ

− 2kΩTRJ−1MRTPRMJ−1RT bi×b
T
i×RMJ−1RTΩ

+ 2ΩTR
(

(J−1RTΩ)×J−1MRTPRMJ−1

+ J−1M(J−1RTΩ)T×RTPRMJ−1
)
RTΩ

≤ −µ|MJ−1RTΩ|2 − (ρ1k − 1)|bTi×RMJ−1RTΩ|2

+ k2

ε
|bTi×RMJ−1RTΩ|2

+ εc2b(1 + c2b)2T 2|J−1M |2|bTi×RMJ−1RTΩ|2

+ 2(1 + c2b)Tcω(|J−1M ||M−1J |+ 1)|MJ−1RTΩ|2,
and finally,
V̇ ≤ −

(
µ− εc2b(1 + c2b)2T 2

− 2(1 + c2b)Tcω(|J−1M ||M−1J |+ 1)
)
|MJ−1RTΩ|2

− (ρ1k − 1− k2

ε
)|bTi×RMJ−1RTΩ|2 < 0, ∀Ω 6= 0,

for ε, ρ1 freely chosen such that

ε� 1
c2b(1 + c2b)2T 2 (18)

ρ1 ≥
1
k

+ k

ε
, (19)

while µ should satisfy
µ > 2(1 + c2b)Tcω(|J−1M ||M−1J |+ 1). (20)

We stress again the fact that for the case M = J the third
term from the first inequality in V̇ vanishes and as such
the condition on µ becomes

µ > 0. (21)

To obtain an explicit convergence rate we can make a
practical selection

ε := µ

2(c2b(1 + c2b)2T 2) (22)

ρ1 := 2
k

+ 2k
ε
≈ 2
k

+ 4k
µ

(23)

that results in
V̇ ≤ −

(µ
2 − 2(1 + c2b)Tcω(|J−1M ||M−1J |+ 1)

)
|Ω|2.

Using now the upper bound on V , that is
V (t,Ω)≤

(ρ1

2 + (1 + c2b)T
)
|MJ−1RTΩ|2,

we finally obtain

V̇ ≤ −kµ(µ− 4(1 + c2b)Tcω(|J−1M ||M−1J |+ 1))
2(µ+ 2k2) V.

For the case M = J in particular we would simply obtain

V̇ ≤ − kµ2

2(µ+ 2k2)V,

since the term 4(1 + c2b)Tcω(|J−1M ||M−1J | + 1)) would
not appear.
Remark 4. (Alternative proof for the case M = J). In this
case in fact, we can establish UGES of the origin by
referring to some well known results on the stability of
linear time-varying systems.To do so, first observe that in
this case the resulting closed-loop dynamics takes the form

Ω̇ = kRb2×R
TΩ, (24)

which using the identity Rb2×RT = −bi×bTi×, results in the
following closed-loop system

Ω̇ = −kbi×bTi×Ω. (25)
This is the classical (linear time-varying) dynamical sys-
tem studied widely in adaptive control theory that is
ensured to be UGES with respect to the origin under
the persistency-of-excitation condition of Assumption 1
and uniform boundedness of bi(t), ḃi(t), see Narendra and
Anaswamy (1989); Loría and Panteley (2002).
Furthermore, notice that Assumption 1 can be relaxed
using the results of the recent studies provided by Praly
(2017); Barabanov and Ortega (2017). In these studies
it is shown that it is possible to ensure (non uniform)
convergence to zero even if the integral in (6) converges
to zero, i.e., µ(t)→ 0 as t→∞.

4. EXTENSIONS - PERSPECTIVES

4.1 Saturated control law

We wish now to modify the nominal controller of the pre-
vious section such that we respect the saturation bounds
of the magnetic actuators and at the same time guarantee
similar stability margins. To this end, consider now the
modified, bounded control law

τ := kb× Mω√
1 + |Mω|2

(26)

with k > 0 and |τ | ≤ kcb, where |b(t)| ≤ cb. In this case,
the closed-loop system (3),(26) reads

Jω̇ = (Jω)× ω + kb2×
Mω√

1 + |Mω|2
. (27)

Similarly to the nominal case, using the rotated momenta
Ω as state we arrive at the closed-loop system

Ω̇ = −kbi×bTi×
RMJ−1RTΩ√

1 + |RMJ−1RTΩ|2
(28)

We can now state a result similar to the unsaturated case
with a similar construction of a SLF and with appropriate
conditions on the persistence constant µ that will appear
in the proof given in the Appendix.
Proposition 5. The closed-loop dynamics (28) withM = I
or M = J is UGAS at the origin.



4.2 Regulation to a constant, non-zero ωd

The previous developments have considered the problem
of regulation of the angular velocity to zero. Now, we study
the problem of regulation to a given constant angular
velocity and establish under which conditions our proposed
nominal controller is effective. We will focus only to the
case M = J as it is easier to present.
For this case, the control law is chosen

τ := kb×
(
J(ω − ωd)

)
(29)

with the scalar gain k > 0. The closed-loop system (3)-(29)
now reads

Jω̇ = (Jω)× ω + kb2×

(
J(ω − ωd)

)
. (30)

To proceed with the stability analysis we need to define
the tracking error

ωr := ω − ωd. (31)
The error dynamics then reads

Jω̇r = (Jω)× ω + kb2×(Jωr) (32)
= (Jωr)× ω + (Jωd)× ω + kb2×(Jωr). (33)

Taking the new (rotated) momenta vector
Ωr := RJωr, (34)

the resulting rotated error dynamics takes the form
Ω̇r = kRb2×R

TΩr +R
(

(Jωd)× ω
)

(35)

= kb2i×Ωr +R
(

(Jωd)× ω
)

(36)
Based on some usual assumptions in the literature, we will
examine three cases for the stability analysis:
1) Case of negligible gyroscopic terms, that is

(Jω)× ω ≈ 0. (37)
In this case, the (rotated) error dynamics is given as

Ω̇r = kb2i×Ωr, (38)
and UGES of Ωr = 0 can be straightforwardly established
using our previous results.
2) Case of a spherically symmetric mass distribution, i.e
an inertia matrix satisfying

J := J0I, J0 > 0. (39)
In such scenario, we can use the property

(Jωd)× ωd = 0, (40)
to re-express the (rotated) error dynamics as

Ω̇r = kRb2×R
TΩr +R

(
(Jωd)× ω

)
(41)

= kb2i×Ωr +R(Jωd)× (J−1Ωr). (42)
Now, we can proceed mutatis mutandis as in the previous
sections since the last term is linear in Ωr. However, we will
get slightly different conditions as we will need to account
for the contribution of this extra term.
3) Case of a general inertia matrix. Since ω̇d = 0, we can
write

(Jωd)× ωd = cd, (43)
with cd ∈ R3 defining a certain constant vector. In this
case, we write

Ω̇r = kRb2×R
TΩr +R

(
(Jωd)× ω

)
(44)

= kb2i×Ωr +R(Jωd)× (J−1Ωr)−Rcd. (45)
Following similar Lyapunov arguments as previously, we
can show that the system is input-to-state stable (ISS)

with cd as input. As cd is constant, hence uniformly
bounded, we can immediately conclude boundedness of
trajectories Ωr(t), equivalently of ωr and ω. Intuitively,
we can see that at a certain extent we can theoretically
minimize the effect of cd thanks to the gain k, and
eventually the constant µ from Assumption 1, in order
to establish a semi-global result.

5. CONCLUSIONS

We have presented a class of control laws that ensure the
global magnetic detumbling for a rigid spacecraft. It is
shown that the classic b-dot controller is a particular law
of this more general class of laws. Our main contribution
was to prove analytically that for this set of laws we can
ensure uniform global exponential stability of the origin.
As such, this seems to be the first reported result in the
literature which proves that the b-dot law can accomplish
these stability margins. Furthermore, for a set of control
gains different from b-dot, we prove that the corresponding
closed-loop system can operate with less restrictions in the
control gains.
Current work focuses on the comparison of the different
control laws through extensive simulations for realistic
mission scenarios, for which we will consider a time-varying
inertia matrix, as in Filipe et al. (2014); Weiss et al. (2011).
Finally, the combination of magnetic with other actuators,
e.g. air drag Sutherland et al. (2019), will be another line
of research.
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Appendix A. STABILITY PROOF FOR SATURATED LAW

As per the nominal case, we define

V1(Ω, t) := 1
2ΩTR(t)MJ−1RT (t)Ω, (A.1)

but now we define

V (Ω, t):=ρ1V1 + ΩTRJ−1MRTP (t)RMJ−1RTΩ√
1 + |RMJ−1RTΩ|2

(A.2)

P (t) :=(1 + c2b)TI

− 1
T

∫ t+T

t

∫ t

s

bi×(τ)bTi×(τ)dτdσ, (A.3)

with ρ1 > 0 to be properly selected. And we remind that
P (t) satisifes

TI � P (t) � (1 + c2b)TI (A.4)

Ṗ = − 1
T

∫ t+T

t

bi×(τ)bTi×(τ)dτ + bi×(t)bTi×(t), (A.5)

Proceeding similarly to the nominal control case, we exam-
ine the time derivative of V in (A.2) along the closed-loop
trajectories of (28) that, using again Young’s inequality
with the constanst ε, ε1, results in

V̇ ≤ −µΩTRJ−1MMJ−1RTΩ√
1 + |RMJ−1RTΩ|2

− (ρ1k − 1)
ΩTRJ−1MRT bi×b

T
i×RMJ−1RTΩ√

1 + |RMJ−1RTΩ|2

− 2k
ΩTRJ−1MRTPRMJ−1RT bi×b

T
i×RMJ−1RTΩ

1 + |RMJ−1RTΩ|2

+ 2ΩTR
(

(J−1RTΩ)×J−1MRTPRMJ−1

+ J−1M(J−1RTΩ)T×RTPRMJ−1
) RTΩ

1 + |RMJ−1RTΩ|2

− ΩTRJ−1MRTP (t)RMJ−1RTΩ
(1 + |RMJ−1RTΩ|2)2 ·

· ΩTRJ−1MMJ−1(J−1RTΩ)×RTΩ

+ k
ΩTRJ−1MRTP (t)RMJ−1RTΩ

(1 + |RMJ−1RTΩ|2)3/2 ·

· ΩTRJ−1MMJ−1RT bi×b
T
i×RMJ−1RTΩ

≤ −
(
µ− εc2b(1 + c2b)2T 2

− 2(1 + c2b)Tcω(|J−1M ||M−1J |+ 1)
− (1 + c2b)Tcω|J−1M ||M−1J |

− k(1 + c2b)Tc4b |J−1M |
2ε1

)
|MJ−1RTΩ|2

− (ρ1k − 1− k2

ε
− k(1 + c2b)Tc2bε1

2 )·

· |bTi×RMJ−1RTΩ|2 < 0, ∀Ω 6= 0,
for ε, ρ1, ε1 freely chosen such that

ε� 1
c2b(1 + c2b)2T 2 (A.6)

ε1 � k(1 + c2b)Tc4b |J−1M | (A.7)

ρ1 ≥
1
k

+ k

ε
+ k(1 + c2b)Tc2bε1

2 , (A.8)
and the persistence constant µ must be such that the first
term becomes negative, that is essentially

µ > 2(1 + c2b)Tcω(|J−1M ||M−1J |+ 1)
+ (1 + c2b)Tcω|J−1M ||M−1J |.

Again, straightforward calculations can show that in the
case where M = J the conditions on the free parameters
and µ are significantly less restrictive.


