A practical approach for evaluating the strength of knowledge supporting risk assessment models - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Safety Science Année : 2020

A practical approach for evaluating the strength of knowledge supporting risk assessment models

(1) , (1) , (2, 3, 4) , (5)
1
2
3
4
5

Résumé

In this paper, we develop a new quantitative method to assess the Strength of Knowledge (SoK) of a risk assessment. A hierarchical framework is first developed to conceptually represent the SoK in terms of three attributes (assumptions, data, phenomenological understanding), which are further broken down in sub-attributes and “leaf” attributes to facilitate their assessment in practice. The hierarchical framework, is, then, quantified in a top-down, bottom-up fashion for assessing the SoK. In the top-down phase, a reduced-order risk model is constructed to limit the complexity and number of basic elements considered in the SoK assessment. In the bottom-up phase, the SoK of each basic element in the reduced-order risk model is assessed based on predefined scoring guidelines and, then, aggregated using a weighted average of “leaf” attributes, where the weights are determined based on the Analytical Hierarchical Process (AHP). The strength of knowledge of the basic events is in turn, aggregated using a weighted average to obtain the SoK for the whole risk assessment model. The developed methods are applied to a real-world case study, where the SoK of the Probabilistic Risk Assessment (PRA) models of a Nuclear Power Plants (NPP) is assessed for two hazards groups, i.e., external flooding and internal events.
Fichier principal
Vignette du fichier
Revised manuscript_20190829 - Copy_ZZ.pdf (999.87 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03137193 , version 1 (02-12-2021)

Identifiants

Citer

Tasneem Bani-Mustafa, Zhiguo Zeng, Enrico Zio, Dominique Vasseur. A practical approach for evaluating the strength of knowledge supporting risk assessment models. Safety Science, 2020, 124, pp.104596. ⟨10.1016/j.ssci.2019.104596⟩. ⟨hal-03137193⟩
50 Consultations
22 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More