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Constitutive equations for the mechanical behavior of
materials are generally based on one of the two following
thermodynamical concepts [1]: :

{i) The present state of the material depends on the
present values and the past history of observable variables
only (total strain, temperature. . .).

(if) The present state of the material depends on the
present values only of both observable variables and a set of
internal state variables.

In this paper, the second approach is considered in order to
connect together different theories, showing some similarities,
and to propose some additional internal variables giving rise
to many possibilities. From the practical point of view, to
solve engineering problems by means of the discussed con-
stitutive equations, it is necessary to perform incremental
computations of the structure.

In the classical developments of thermodynamics with
internal variables, several concepts are introduced, such as:

e the existence of a thermodynamic potential (the free
energy for example) from which the relations between
state variables (strain, temperature for example) and
associated thermodynamic forces (stress, entropy. . .)
are defined;

e the dissipative potential, with generalized normality
rule, which gives the evolution equations for internal
state variables (plastic strain and others. . .), and allows
the a priori verification of the second principle.

In the context of plasticity and viscoplasticity, such general
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On the Plastic and Viscoplastic
Constitutive Equations—
Rules Developed With
Internal Variable Concept

The description of monotonic and cyclic behavior of material is possible by
generalizing the internal stress concept by means of a set of internal variables. In
this paper the classical isotropic and kinematic hardening rules are briefly
discussed, using present plastic strain tensor and cumulated plastic strain as
hardening variables. Some additional internal variables are then proposed, giving
rise to many possibilities. What is called the ‘‘nonlinear kinematic hardening’’ leads
W ‘0 a natural description of the nonlinear plastic behavior under cyclic loading, but is
| connected to other concepts such as the Mroz’s model, limited to only two surfaces,
and similarities with other approaches are pointed out in the context of a
generalization of this rule to viscoplasticity.

concepts have been applied by many workers, giving rise to a
coherent tool, especially for the classical flow rules [1-3]. We
shall limit the present contribution to the study of differential
constitutive equations for the internal variables; the ex-
pressions for corresponding dissipative potentials have been
analysed previously [4-5].

One of the basic flow rules is the so-called nonlinear
kinematic rule, initially introduced by Armstrong and
Frederick [6] and widely developed in the recent few years
[7-9]. The use of internal variables playing the role of internal
stresses, can be considered as conceptually equivalent to the
use of multilayer models as in the theory developed by
Besseling [10] and Meijers [11].

The equations discussed in next sections have been applied
to several refractory alloys, used in gas turbine applications
(IN 100, for example), especially in the high temperature
viscoplastic range. The application to the complex cyclic
behavior of type 316 stainless steels is considered in the second
part of the paper.

Development of a Nonlinear Kinematic Rule

When dealing with the plastic and/or viscoplastic flow, the
central problem concerns the modelization of hardening
processes. In terms of a macroscopically homogeneous
material, the classical parameters used to describe hardening
are:

(i) the cumulated plastic strain p, scalar isotropic variable
defined by

i 1/2
P (5 dey, dep,.j> )

(i) the present plastic strain, oy; = €, used as a kinematic
variable. .
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The classical modelizations introduce the concept of elastic
domain (or equipotentials), written in the stress space by
means of the thermodynamic forces associated with the two
internal variables. Such an elastic domain is

f=J(o—x) —R—k=0 )

where the scalar variable R (or drag stress [12]) is associated
with p and the kinematic tensor x (or back stress or rest stress
tensor [13]) is associated with «. They, respectively, give the
size and the position of the elastic domain. J represents a
distance in the stress space; for a von Mises material

3 172
Jo=20 =] = (o =xi) (o =x5) ®)

where o’ and x’ are the deviators of ¢ and x. k is a material
constant (temperature dependent) corresponding to the initial
size of the elastic domain.

The relations between such = variables are generally
nonlinear for the isotropic variables, but linear for the
kinematic ones, which corresponds to the classical rule of
Prager [14]

R=R(p) z c
e = —2C = -
D X= 3 o= Cep,
The plastic flow follows the normality rule, which states
de, =dN— 4
€ do )

The plastic multiplier @\ is derived from the hardening rule
through the consistency condition f = df = 0 when plastic
flow occurs (no plastic flow when f < 0 or df < 0, and f
cannot be positive for time independent plasticity).

The usual linear kinematic rule can be easily modified in
order to introduce some nonlinear evolution, with an ac-
ceptable description of cyclic loadings (concavity of the stress-
strain loops under -tensile-compressive loading for example).
This modification, initially proposed by Armstrong and
Frederick [6], in which an evanescent strain memory effect is
introduced (evanescent along the plastic strain path), can be
written in its simplest form

da=de,—C a dp

or
2 )
dx=C< o a de, — X dp) with C=c/a )

Under uniaxial cyclic loading, direct integration gives the
following relations for stress in each branch

o=va+(x,—v a)e S %) +y R(p)+v k
=x(e) £R(p) £k ©)

where » = =1, depending on the direction of plastic flow and
Xos» €p, aI€ the values of x and e, at the last change of plastic
_strain rate. Let us underline the complete generality of this
rule, expressed by equation (5), under any loading condition;
the unloading events x,, €5, in (6) appear only after explicit
integration. Relation (6) shows also the two different
dependencies upon present strain and cumulated plastic strain
(the last term allows cyclic hardening or softening).

J(o)=R+k+a

Fig. 1 The nonlinear kinematic rule (for R + k = C'e)—(a) in-
terpreted as two-surfaces theory, (b) tensile-compressive response

As shown in Fig. 1(b), the evolution of x as a function of ¢,
is no longer univocal and the concavity of stress-strain loops is
correctly represented. Cyclic stabilization implies an asymp-
totic value for R (p) and the symmetry condition when no
ratchetting occurs (obtained from integration) is

Ae
XMax = Xo = ¢ th C_EE (7)

where A, is the plastic strain range at stabilization. Under
strain control, the present model leads to a mean stress
relaxation effect before stabilization.

Another property of the nonlinear kinematic rule is to give
the possibility of ratchetting, when a cyclic load is
superimposed to a constant stress state (nonsymmetrical
tension-compression or cyclic torsion with constant ten-
sion . . .). It is well known that Prager’s kinematic rule (or
the modified rule by Ziegler [15]) cannot describe such rat-
cheting effects. .

A similar model (as the NLKR) was proposed by Mroz,
Shrivastava and Dubey [16], where x in equation (5) is
replaced by ¢,. This modification leads to similar results
under cyclic loadings but some limitations (in strain) can be
necessary.

For the isotropic hardening (equation governing the scalar
variable R) one can use any function R (p), as measured for
example from the tension curve (after elimination of the
kinematic part). We can also restrict ourselves to some dif-
ferential equation, similar to (5), leading to a stable asymp-
totic behavior (which is necessary for cyclic stabilization)

dR=b(Q—R)dp @®

where b and Q are two constants. The relation between R and
pis obtained after integration

R=Q(1-e") ()

The foregoing formulation has been generalized by Lee and
Zaverl [17], including some slight modifications: they add a
fourth-order tensorial variable M in order to take into

Nomenclature

’

0,0’ = stresstensor, stress deviator
e, = Dplastic or viscoplastic strain tensor

p = cumulated plastic strain

x = kinematic internal stress tensor or
back stress tensor

o = kinematic strain variable

R = isotropic internal stress or drag

stress
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0,6,,x = tensile components of foregoing
tensors
J = Mises-type invariant
G.f,F = elastic, yield and bounding surfaces
y=+1 = tension-compression index
M, = anisotropic tensor

k,a,C,n,K,b,y,m,w = material coefficients
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account the anisotropy effects, existing the ‘‘initial state’’ or
induced by hardening. As proposed in previously by many
workers [18, 19, 20], the von Mises criterion [3] is replaced by

J=[M,jk/(0ij—xij)(Uk/—Xk/)]m 10

This allows the simplest kind of anisotropy, described
through rotation of the surfaces, which is representative of
many experimentally observed second-order effects,
especially in stainless steels [21, 22]. A third-order anisotropy
with distorsion of the yield surface and appearance of some
“‘corner’’ effects [23, 24], cannot be described by such a
simple criterion.

The original suggestion of Lee and Zaverl was to use M,
as an internal state variable, by which evolution could be
governed by the same kind of equation i

dM = w (Mg — M ) dp 1)
where w is a material constant and Mgy, represents a
stationary anisotropic state. The initial state is represented by
some tensor M?%,, for example an isotropic von Mises tensor:
81 + 838 —43 8;6. The choice of M}, as a function of
the applied loading and the subsequent hardening represents
the main difficulty of this approach and has not been clearly
defined until now [25].

Relations to Other Approaches

As mentioned already [17, 26], the foregoing internal
variable approach of plasticity through a nonlinear kinematic
rule can be considered as a two-surfaces theory, as in many
other works [27,28]. These two surfaces are

1 the yielding surface, which is defined by f = 0;

2 the bounding surface (or limit surface), which defines the
limiting states of stress and can be obtained from the two
inequalities: J(o—x) = R + kand J(x) =< a, the last one
being easily verified from the rule (5). That gives for the
bounding surface

F=J(o)—R—k—a=0 12)

Figure 1(a) illustrates this property, also evident from the
uniaxial particular case (6). These two surfaces can expand
isotropically through the functions R(p) and a(p). The
yielding surface moves kinematically by the rule (5), but the
bounding one has no kinematic movement; this movement
could be superimposed by adding to the x variable in (2) a
linear kinematic variable (see relations (19) and (20)), giving
rise to possibilities similar to that of modelization by Dafalias
and Popov [27, 29]. ‘

A second analogy has to be pointed out: the nonlinear
kinematic rule (5) corresponds to a particular Mroz’s model
[30], with only two surfaces. In the original Mroz’s for-
mulation, the present state is defined through a family of
surfaces

Ji=J(e—x1) —k;=0 13)

x; and k; giving, respectively, the position and the size of the
surface f; = 0. The plastic flow, when the stress has attained
the surface f;, is governed by its movement, until the next
surface fy,, is attained. The kinematic movement of the
surface is described by the following hypotheses:

(@) the plastic strain rate is defined through the normality

rule (4):
af f 3
dép =d)\1 -a’; = 7(1)\1?‘1

(b) the rate of the kinematic variable x, is proportional to
0,+1 — 0, where a;, | is the stress state on the next surface f},
with the same outward normal

(14)

dx;=du(o;, | —0) (15)
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Such a condition is chosen in order to assure coincidence of
normals when actual stress state (on surface f;) will attain next
surface f;, ;.

In the Mroz’s formulation, the multiplier du is determined
from the consistency condition f; = df; = 0 and the scalar d\,
(or the plastic strain increment dp) can be chosen freely; Mroz
used a linear relationship, i.e., a constant value for each d\,.

By using the von Mises criterion (3) and the relations (2)
and (4), the nonlinear kinematic rule (5) leads to

dx=dx'=C| 2= (o' =x) —x'|d0  (16)

R+k
If o, is the stress state on the bounding surface (12)
corresponding to the same outward normal as the direction of
plastic flow, one can write (in the present model the center of
this surface is the stress origin, see Fig. 1(a)

aj o —x’
R+k+a R+k

The combination of (16) and (17) easily gives [8]
dx=C(o; —0¢')dp

which is very similar to the Mroz’s hypothesis (15). The only
differences are the use of stress deviator in place of stress and
of plastic strain increment dp in place of multiplier du. The
first difference (deviators) does not change anything under the
plastic uncompressibility hypothesis as a pure volumetric
translation of the yield surface does not change the yield
surface.

In fact, the foregoing demonstration implies that the
Mroz’s model contains the nonlinearity of hardening between
two successive surfaces (with the two modifications just
mentioned). This remark could lead to a better use of this
model, with a few surfaces only for a given nonlinearity in the
stress-strain response. Moreover, this is a proof that general
properties of the nonlinear kinematic rule (5) and the Mroz’s
model are identical.

Several experimental studies have shown that the trans-
lation of the yield surface follows the direction of prestress
(when proportional loading is considered) [22, 23]. It can be
demonstrated that such a behavior is in accordance with most
of the kinematic flow rules (Prager [14], Ziegler [15], Mroz
[30]) and with the nonlinear kinematic rule developed in the
foregoing. Let us remark here that in the principal stress plane
(0y, 02, 03 = 0), such a translation does not follow the
direction of the normal to the von Mises ellipse, even with the
Prager’s rule, where proportionality between strain increment
and translation is supposed. In fact, such a proportionality is
written in the deviatoric plane: the corresponding translation
of the von Mises cylinder, parallel to the stress deviator (but
perpendicular to its axis), accords exactly with a translation of
the von Mises ellipse in the plane, following the direction of
loading (under proportional loading). This property implies
that experimental proportional loadings cannot validate or
invalidate the theoretical rules.

am

The nonlinearity of the rule (5) arises for a limited range in
plastic strain, depending on the constant C (Fig. 2(a)). In
order to extend its validity to a larger domain in stress and
strain one can use several kinematic variables x; (two or
three), each of them following the same typical rule [31]

2
dxj=Cj<?ajdep—xjdp) (18)

The yield surface is then expressed with the sum of such
separated variables

f=J<a— Zd: xj> —R—k=0

As shown in Fig. 2(b) (for a purely kinematic case), such an

(19)
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increase in the parameters for the material leads to greater
possibilities for the description of stress-strain loops: a large
value of C; associated with a small value of a; gives the initial
nonlinearity with a very large plastic tangent modulus (but not
infinite as in some other approaches), C, and a, give the
median nonlinear behavior, a low value of Cs, associated with
a high value of a; describes the asymptotic behavior for large
strain, corresponding to the existence of a bounding surface.
One can degenerate equation (18) into a linear rule

2
dx; = — Csde, (20)

3
Let us mention that the rule (18), (19), is very similar
(qualitatively and quantitatively) to the model proposed by
Dafalias and Popov, through a different mode of presen-
tation (the kinematic rule is not stated a priori but follows
from the evolution of tangent modulus). Two differences
have to be pointed out:

(/) 1In our approach the plastic tangent modulus cannot be
infinite at the initiation of yielding as in [29]; (a sufficiently
high value is, however, possible with the parameters a;, C;).

(i)) Under cyclic loading (with or without unloading), the
theory developed by Dafalias and Popov needs updating of
the tangent modulus, which is not the case with the present
formulation. In fact, updating procedures seem to be often
introduced to account for the very high nonlinearity in the
stress-strain loops (tangent modulus decreasing from infinity
to some limit value). The present development shows omne
possibility to prevent updating with a sufficiently large
variation of tangent modulus.

A new approach was recently introduced by Dafalias [32,
33] to eliminate the need for updating: the new concept of
“‘elastic nucleus,’’ avoiding an explicit yielding surface and a
load-unload criterion allows a smooth elastic-plastic tran-
sition and a better description of flow after partial unloading.
Unfortunately, this theory is more difficult to develop with
explicit integration procedures and cannot be re-examined in
the present context. Future works and evaluations of such
attractive concept could certainly improve its understanding
and applicability.

Viscoplastic Constitutive Equations

The viscoplastic flow rules are needed when time or strain
rate influence the inelastic behavior. Time-independent
plasticity is then considered as a particular limiting case of
viscoplasticity. The introduction of viscous effect is easily
done, using 'equidissipative surfaces [13]; a pure elastic
domain can still be considered

G=J(o6—x) —R—k=0 Q1)

but, as a major difference with the pure elastic case, the stress
state can be such as G > 0. The viscoplastic potential can be
expressed as a power function! of G, which means that the
strain rate will be a power function of G. Using a von Mises
criterion and the normality rule [7]

d 3 <J(a—x)-—R—k>” d —x’
€, = —
SN K J(e—x)

The same hardening rules as for plasticity can be used; for
example, the nonlinear kinematic hardening defined by
equation (5). Some experimental studies have shown the
preponderance of such kinematic behavior in the viscoplastic
behavior [23, 35]. The rule (5) was used with success for the
IN 100 refractory alloy at several temperatures [7, 9, 36] and
seems to apply also to other metallic materials [35].

Other kinematic rules have been developed in order to

dt (22)

! A different function can be used as in [12 or 34].
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Fig.2

describe the viscoplastic flow: the well-known Bailey-
Orowan equation [37] introduces nonlinear effects through a
recovery term

dx=Cde,—vy x dt (23)

Such a recovery can also be introduced in the isotropic
hardening, as in the Lagneborg’s model [38] or in Merzer-
Bodner equations [39]. The simple isotropic rule (8) can be
generalized by

dR=b(Q—R)dp—~ Rdt (24)

The kinematic variable equation (23) leads to nonlinear
hardening only by time effect: in other words, for a high
strain rate and under cyclic loading (for stabilized behavior
one must have dR = 0), the hardening remains linear.
Nonlinearity is only present if coefficient C in equation (23) is
depending upon stress [40] or:back stress x [41]. Dependence
in terms of invariants of ¢ or x gives however unsatisfactory
results under cyclic loading.

Superposition of the nonlinear kinematic hardening and
nonlinear time recovery is easily obtained by {7}

dx=C<%adep—xdp)—yJ(x)”'“xdt 25)
which generalizes the Bailey-Orowan equation and is similar
to a proposition of Malinin and Khadjinsky. Many history
effects can be simulated through such a combination: partial
or complete recovery of hardening by aging at high tem-
perature, dependency of the internal stress (or friction stress)
on the applied stress and time in the creep tests [42], ac-
celeration effect for creep at a higher stress, creep delay after
a decrease in the applied stress [4].

The effect of the evolution of the microstructure upon the
macroscopic viscoplastic behavior can be described by means
of additional internal variables in the isotropic hardening
equation [5, 9].

Under uniaxial loading, if we neglect the time-recovery
effects (y < < 1), the present theory leads to the following
stress decomposition

o=x(e,) =R (p) £k+0a,(&) (26)
where the kinematic term depends on the last reversal €, _, X,

Transactions of the ASME



Fig.3 Stress decompositions in the tensile test
(@) Nonlinear kinematic rule and I.M.G. model [45, 49]
(b) Krempi-Cernocky decomposition [53, 54]

as in (6) and where the ‘‘viscous’’ stress g, is a power function
of plastic strain rate

@7

This decomposition is illustrated in Fig. 3(a), Wthh shows
that curve x+R+k corresponds to an equilibrium behavior
(zero strain rate). :

Let us point out some similarities between such viscoplastic
equations, where hardening is described in terms of internal
variables and other approaches, using total strain concept and
no elastic domain. Such theories [43, 44, 45, 46] are developed
in some intermediate range between the above approaches and
works by Valanis [47], and use the complete history of ob-
servable variables to define the present state. In fact, only
some particular events are memorized, when plastic flow
reverses [48] or when work dissipation rate becomes negative
[49]. If loading reverses, these approaches use instantaneous
changes of the characteristic functions, which leads to several
difficulties, especially under multiaxial and random loading
(as in the Eisenberg’s formulation [50] for time-independent
plasticity and in the ORNL model [51]). Let us note the recent
publication [52] around the three-dimensional generalization
of ORNL model for any kind of loading, where updating
procedure is not needed, but instantaneous changes still in-
tervene.

The theory by Krempl and his co-workers [53, 54] uses in
the one-dimensional case
Y o—g(e)

f=— + ————— 28

“F T Ek(o-g() el
where g (¢) plays the role of an equilibrium stress-strain curve
(zero strain rate) and & ( . ) is the viscosity function. Using the
notation

0,(é) =K ep

I
E k(p)

one can write equation (28) as

o=g(e) +F! (é—-i>
E
F~! plays the role of the aforementioned viscous stress and g
(e) represents the sum X (e,) + R (p) + k in equation (26);
the only differences are the total strain instead of plastic strain
and the specific choices of functions g or k in regard to
functions X and ¢,. Let us point out the greater flexibility of
(26) under cyclic loading because of the difference between
actual plastic strain and cumulated plastic strain (that is
important to describe separately monotonic and cyclic hard-
ening).
Such a similarity had been advocated by the authors [44], as

F(p) =

(29)
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well as for the three-dimensional formulations. The general
properties of the two kinds of modelization are then similar
and reproduce many experimental results, especially under
varying strain rate or stress rate [54].

Two additional differences can be selected:

1 Under cyclic loading, Krempl intends to use updating
procedures; our present developments sustain the idea that
such updating is not really necessary, which can greatly
simplify the calculation procedures.

2 To describe aging process, time can be directly in-
corporated into the characteristic functions of the model [53];
we prefer to introduce its effect through additional terms in
the evolution equations as mentioned in the foregoing for a
recovery effect or by means of additional internal variables
[9, 55] (see also Part II of the present paper).

The model developed by Guelin, et al. [45, 49] uses a similar
decomposition of stress

o=0,+0,+0, (30)

where o, is the pure hysteresis and is controlled by an
equation quite similar to the nonlinear kinematic rule (5), g,
describes the strain hardening, o, is the viscous stress,
depending on strain rate through an integral formulation. The
decomposition (30) is identical to (26), as shown in Fig. 3: g,
corresponds to x, g, corresponds to R + k. Here also, the
differences intervene in the choice of the functions, and under
cyclic loading, where updating of some characteristics are
needed, especially the stress and the o, variable. With the
same global properties, the nonlinear kinematic rule does not
need any similar updating; it uses a completely defined set of
explicit equations for the internal variable evolutions, for'any
kind of cyclic multiaxial (and random) loading.

Conclusion

The plastic and viscoplastic constitutive equations are
under constant development, giving rise to better descriptive
possibilities through different formulations.

1 Concerning the classical or less classical plastic and
viscoplastic flow theories, one point has been un-
derlined: many approaches considered as different in their
general statements and their point of departure lead in fact to
similar descriptive possibilities and in some occasions to quite
identical flow rules; for monotonic loadings, only small
changes in the characteristic functions lead from a typical
approach to another one. So the differences seem to be more a
question of presentation:

(/) from a set of surfaces,
(i) from explicit differential equations for a set of in-
ternal variables,
(iif) with no internal variables and no yield surface
concept.

2 The theories based on internal variables (i), are in a
median situation in regards to the others and it is the opinion
of the authors that they give a larger range of applicability
with the following approach:

try the simplest model with a few internal variables;

if necessary change the characteristic functions or add
some complementary effects (time recovery for
example) on the basis of physical observations;

o if a particular additional process is evident from ex-
periments, try to introduce it through additional in-
ternal variables, obeying particular rules (strain
memory effects [31] and hlstory of temperature [9] are
such examples).

3 Another point has been pointed out several times in this

MAY 1983, Vol. 1051157



paper, concerning cyclic flow rules with or without updating
of variables; our opinion is that updating is not necessary if
sufficiently good equations are used for internal variable
evolutions (as demonstrated by the so-called nonlinear
kinematic rule). The updating procedures are generally in-
volved to transform good monotonic flow rules into not too
bad cyclic flow rules. In fact, we have to think in terms of
cyclic loadings, even for monotonic ones. These remarks
constitute partial opinions, but the authors admit the
possibility of good developments of updating procedures if
they are written correctly for any three-dimensional non-
proportional and random loading.
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