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Abstract

In this paper, a general numerical framework for the modeling of ductile fracture in 3D meshes
is introduced. The strategy is inspired from the phase field model and adaptive remeshing tools.
The phase field model was introduced as a continuous model for predicting the initiation and
propagation of cracks in materials. However, the model has a limitation on the choice of the
characteristic length scale that controls the width of the cracked region. This work contributes
to the full modeling of transition between the continuous damage using the phase field model
to the discontinuous crack initiation and propagation within a unified numerical framework called
CIPFAR. The contributions of the work include: (i). identification of the crack surface on arbitrary
mesh topologies; (ii). intersection by a Sequence Agnostic Partitioning strategy which is introduced
to adapt the mesh to the computed crack surface; (iii). a nodal duplication by virtual non-manifold
patch repair to open the mesh. Combining all the mentioned algorithms with adaptive remeshing
allows modeling the initiation and propagation of cracks in materials efficiently. Different numerical
examples are presented to prove the ability of the developed algorithm to model ductile fracture
cases without the need to predefine the crack initiation region.
Keywords: Phase field model, Adaptive remeshing, Ductile fracture, Crack insertion and
propagation

1. Introduction

The modeling of initiation and propagation of cracks in continuum media has been considered as
one of the most important and challenging research areas in mechanical engineering in the last
decades. There is almost no engineering applications that is not concerned with the study of
crack formation such as: aerospace, automotive and energy sectors. Fracture mechanisms and
propagation prediction process could be very complex and hence a suitable computational tool is
needed to model the process with high precision and low computational cost.

Modeling techniques in fracture mechanics can be divided in two categories: (i). brittle fracture;
(ii). ductile fracture. In brittle fracture, the plasticity is confined to a region that is small compared
to the crack length. The fracturing process is mainly based on the creation of new crack surfaces.
One of the first attempts to predict the onset of failure in brittle materials was a theory based on
Griffith’s hypothesis [1] in which a competition between internal elastic and fracture energies leads
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to the onset of fracture, i.e., the creation of new crack surfaces. The theory of Griffith is able to
predict the critical moment for pre-cracked bodies at which the crack propagation is triggered. The
main drawback of the Griffith criterion is that it deals with pre-cracked bodies where the crack
tip is predefined and predicts the critical failure load with no description on the initiation and
propagation mechanisms. Later on, Irwin defined the stress intensity factors in order to describe
the stress state around the crack tip in a finite medium [2].

Francfort and Marigo proposed in [3] a mathematical generalization of the Griffith theory
in which a minimization of an energy functional that contains the elastic and fracture energies
enables the prediction of initiation, propagation, merging and branching of crack branches in brittle
materials. A regularized formulation of the problem was proposed by Ambrosio and Tortorelli [4]
in which the sharp crack is replaced by a continuous field known as the "Phase field" that goes
from 0 (intact material) to 1 (totally damaged) with a length scale that controls its sharpness.
Within the framework of finite elements, the smallest mesh size needs to be small enough for
an accurate resolution of the field. An uncoupled computational strategy known as "Staggered
algorithm" is used to solve the system of equations to fully describe the cracking process. Later
on, many extensions to the ductile fracture have been proposed in the literature. The main aim
was to introduce the effect of plastic strain in the crack driving force. M. Ambati et al. [5, 6]
coupled the equivalent plastic strain with the elastic degradation function through an exponential
form. Borden et al. [7] also added an effective plastic energy component degraded by a plastic
degradation function.

Modeling techniques in ductile fracture can be divided in two categories: i. continuous models,
ii. discrete models. In continuous models, an isotropic/anisotropic damage field is defined within
the context of continuum mechanics and associated to the bulk material in which its evolution
at the macro scale describes the nucleation, growth and coalescence of voids at the micro scale
[8]. The damage field degrades the material properties as a response to the evolution of the
micro voids. A main drawback of such description is the inability to model the discontinuous
transition to fracture where a discrete crack surface is introduced in the medium at the macro-
scale. This results in an accumulation of a highly strained material in the low stress cracked region
as previously shown in [9]. Among the former, we can count the damage models that are based on
either micro-mechanical or phenomenological descriptions. In the initial model of Gurson [10], the
level of porosity in the material is coupled with the yield surface through a void fraction function
in order to model the effect of damage on the mechanical behaviour. An improved GTN model [11]
uses more parameters to give a better description of the growth of voids. The phenomenological
models are semi empirical models that uses some mechanical fields such as the plastic deformation
and stress state to describe the level of damage in the material. The Lemaitre model [12] is a
thermodynamically consistent damage model that is mainly based on the stress triaxiality. An
enhanced Lemaitre model [13] was also introduced to include the effect of plastic deformations
and limit the evolution of damage beyond a given threshold of the stress triaxiality. Another
enhancement to the model was presented by T.-S. Cao et al. in [14] by including the effect of the
Lode parameter.

Contrary to continuous models, discrete models provide an accurate description of the transition
from damage to fracture by modeling the decohesion of the crack faces. One of the initial attempts
to model the discrete crack propagation with remeshing within the context of ductile fracture was
proposed in 2D by J. Mediavilla et al. [9] in combination with a continuum damage model. The
crack propagation direction is the one that leads to the maximum damage in the material at
different distances from the crack tip. The results were very promising, however this approach
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might lead to wrong crack directions especially in the case of complex crack patterns, merging,
branching and multiple cracks. In addition, the extension to 3D is not straight forward. S. Feld-
Payet et al. [15] introduced a marching ridges algorithm that uses a damage function in order
to identify the crack surface intersection in regularized media. The idea is very similar to finding
a corner or edge in an image as explained in [16] in which authors proposed a marching lines
algorithm able to extract the crest lines in an image. In 2D, an initial point that lies on the crack
surface is chosen as the point that has the maximum damage. An evaluation circle with some
radius was then used to find another local maximum. In 3D, the same idea as in 2D is used to
construct the crack front by performing a search in three orthogonal planes, then the crack segment
is constructed by performing another search in the planes orthogonal to each segment.

The extended finite element method XFEM was introduced in [17] as a numerical technique
that handles the existence of cracks in brittle fracture by incorporating discontinuous functions
to the classical finite element method. The main advantage is that the crack can be propagated
within the mesh without any remeshing. However, the need of remeshing in ductile fracture is
essential especially in large deformations which makes the use of XFEM very limited due to the
complexity of the transfer of fields after remeshing and applying the incompressibility constraints
[18].

Another discrete modeling technique is the use of remeshing in order to introduce the discon-
tinuity in the medium. P.O. Bouchard et al. introduced in [19] a numerical framework for the
modeling of crack propagation in 2D with a comparison between different propagation criteria.
Ali Hussein et al. [20] presented a strategy that uses the phase field solution in order to detect
the crack path. Then, a specific cutting algorithm is developed using the virtual elements method
[21, 22] in order to open the crack lips once the nodes that lie on the crack surface are duplicated.
Another use of remeshing was introduced in [23] within the context of cohesive element modeling.
The algorithm begins by detecting the crack propagation angle, then a remeshing operation is
carried out to insert nodes on the detected crack path followed by insertion of cohesive elements.

The main objective of this work is to provide a unified 3D model CIPFAR (Crack Insertion
and propagation using the Phase Field and Adaptive Remeshing) for predicting initiation, prop-
agation, merging and branching of cracks in an elasto-plastic medium by combining the phase
field model with adaptive remeshing tools. The main features of the presented algorithm are: (i).
the simplicity and robustness regardless of the constitutive law; (ii). designed for the purpose of
parallel computations; (iii). can handle complex cracking patterns without any additional ad-hoc
criteria. The article is organized as follows: Section 2 introduces the phase field model formulation
used in this work. In section 3, the crack insertion algorithm is described in details with three
numerical examples dedicated to ductile fracture presented in section 4. Finally, a conclusion with
some perspectives for the future work is given in section 5.

2. The phase field model for ductile fracture

In this section, the governing equations of the phase field model along with the mechanical
formulation of the problem is presented.

2.1. General formulation of the phase field model

A Mumford–Shah [24] type free energy functional ℰ was introduced by Francfort and Marigo in
[3] as a generalization of Griffith criterion for fracture [1] in brittle materials. The minimization of
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the proposed functional with respect to its two parameters u and Γ leads to an energetic description
of the fracturing process including the initiation, propagation, merging and branching of cracks.

ℰ(u,Γ) =
∫︁

Ω
𝑊𝑒(𝜀𝑒) 𝑑Ω +

∫︁
Γ
𝐺𝑐 𝑑𝜕Ω (1)

𝑊𝑒 is the elastic strain energy, 𝐺𝑐 is the fracture toughness, u is the displacement vector, Γ is the
discrete crack surface and Ω is the volume of the domain as shown in Fig. 2a.

The treatment of the introduced energy functional is not suitable for numerical implementation
since the second integral is carried out over an unknown crack surface. A regularized functional ℰ𝑙

was introduced by Ambrosio and Tortorelli in [4] that transforms the discrete crack topology by a
scalar field parameter 𝑑 that varies between 0 (solid material) and 1 (fully damaged material) as
shown in Fig. 2b with a characteristic length scale 𝑙𝑐 that manages the width of the damaged zone

ℰ𝑙(u, 𝑑) =
∫︁

Ω
𝑔𝑒(𝑑)𝑊𝑒(𝜀𝑒) 𝑑Ω +

∫︁
Ω

𝐺𝑐

2𝑙𝑐
(𝑑2 + 𝑙2𝑐 |∇𝑑|2) 𝑑Ω (2)

with an elastic degradation function that couples the effect of crack propagation on the bulk
material

𝑔𝑒(𝑑) = (1 − 𝑑)2 + 𝜁 (3)
where 𝜁 is a numerical parameter usually chosen as 10−6 in order to prevent numerical singularities.
The minimization of the regularized energy functional with respect to the phase field variable leads
to the following equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐺𝑐

𝑙𝑐
(𝑑− 𝑙2𝑐∇2𝑑) = −𝑔′

𝑒(𝑑)ℋ(x, 𝑡) (Evolution of the phase field) (4a)

ℋ = max
𝑛

W𝑒(𝜀𝑒(x, 𝑑𝑛)) (Local history functional) (4b)
∇𝑑 · n = 0 (Neumann boundary condition) (4c)

The homogeneous solution of the phase field differential equation in 1D can be proven to be as
follows[25]

𝑑(𝑥) = exp
(︁−|𝑥|
𝑙𝑐

)︁
(5)

The phase field solution and its derivative are illustrated in Fig. 1. It is clear that the phase
field function is non differentiable at 𝑥 = 0 , i.e., the gradient is undefined. In order to describe
the initiation and propagation of cracks in ductile materials, Borden et al. [7] modified the local
history functional that appears in equation 4b as follows

ℋ = 𝛽1 𝑔
′
𝑒(𝑑) max

𝑛
W𝑒(𝜀𝑒(x, 𝑑𝑛)) + 𝛽2 𝑔

′
𝑝(𝑑) < W𝑝(𝜀) − W0 > (6)

the angle bracket operator is defined as follows:

< 𝑥 >=
⎧⎨⎩𝑥 𝑥 ≥ 0

0 𝑥 < 0

where 𝑊𝑝 is the plastic energy density, 𝑔𝑝 is a plastic degradation function that is chosen as the
same as the elastic degradation function, 𝑊0 is a plastic energy threshold, 𝛽1 and 𝛽2 are numerical
parameters used to calibrate the model with the experiments.
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Figure 1: Phase field approximation in 1D along with its derivative.

Figure 2: Geometry and boundary conditions of a domain with discontinuity Γ in (a). Phase field regularization
of the crack topology in (b).

A mixed velocity/pressure finite element model is used for the mechanical computations. In
order to prevent the volumetric locking associated with the incompressible behaviour of the plastic
deformation, a P1+/P1 stabilization has been used. The final formulation satisfies the Brezzi-
Babuska inf-sup condition [26, 27]. The mesh is built using tetrahedral elements. The strong and
weak formulation of the mechanical and phase field equations can be found in appendix A.

2.2. Elasto-plastic model

Starting with the assumption of linear isotropic elasticity, the equivalent plastic strain increment
is calculated using the return mapping algorithm at the increment 𝑛+ 1 as follows

𝑠𝑡𝑟𝑖𝑎𝑙 = 2𝜇 𝑔𝑒(𝑑𝑛) [𝜀𝑛+1 − 𝜀𝑝
𝑛] (7a)

𝑓 𝑡𝑟𝑖𝑎𝑙 =
√︁

3 𝐽2(𝑠𝑡𝑟𝑖𝑎𝑙
𝑛+1 ) − 𝑔𝑝(𝑑𝑛)𝜎𝑦(𝜀𝑛) ≤ 0 (7b)

with 𝜇 defined in terms of Young’s modulus 𝐸 and Poisson’s ratio 𝜈 as follows

𝜇 = 𝐸

2(1 + 𝜈)

where 𝑠𝑡𝑟𝑖𝑎𝑙 is the trial deviatoric stress, 𝜀 is the total strain tensor, 𝜀𝑝 is the plastic strain tensor,
𝜀 is the equivalent plastic strain, 𝐽2 is the second invariant of the deviatoric stress tensor, 𝑔𝑝 is the
plastic degradation function that is chosen to be the same as the elastic degradation function 𝑔𝑒

and 𝑛 is the increment number. If the condition in 7b is not satisfied, a new plastic deformation
increment is found as follows

𝑓 =
√︁

3 𝐽2(𝑠𝑡𝑟𝑖𝑎𝑙
𝑛+1 ) − 𝑔𝑝(𝑑𝑛)𝜎𝑦(𝜀𝑛+1) − 3𝜇𝑔𝑝(𝑑𝑛)Δ𝜆 = 0 (8)
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In this study, the effective stress 𝜎𝑦 is defined according to two material hardening laws as follows

𝜎𝑦 = 𝜎0 +𝐻𝜀, (Linear hardening) (9a)
𝜎𝑦 = 𝜎∞ + (𝜎0 − 𝜎∞)𝑒(−𝛿𝜀), (Nonlinear hardening) (9b)

where 𝜎0 is the initial yield stress and 𝐻 is the plastic modulus, 𝜎∞ is the ultimate strength and
𝛿 is the saturation coefficient. It should be noted that 𝑑𝑛 is constant in equation 8 where no
kinematic hardening is considered. A Newton-Raphson nonlinear solver is used to solve equation
8, the equivalent plastic strain update is written as

𝜀𝑛+1 = 𝜀𝑛 + Δ𝜆 (10)

where 𝜆 is the plastic multiplier. The update of the deviatoric stress tensor and discrete tangent
modulus are expressed as follows

𝑠𝑛+1 = 𝑠𝑡𝑟𝑖𝑎𝑙
𝑛+1

1 + 3𝜇𝑔(𝑑𝑛)Δ𝜆
𝜎0(𝜀𝑛+1)

(11)

𝐶𝑑
𝑛+1 = 𝜕�̇�𝑛+1

𝜕�̇�𝑛+1 = 2𝜇𝑔(𝑑𝑛)
(︂

1 − 6 𝜇2Δ𝜆
𝐽2(𝑠𝑡𝑟𝑖𝑎𝑙

𝑛+1 )𝐼𝑑𝑒𝑣
)︂

− 4𝜇2�̄� ⊗ �̄�
(︂ 1

𝜕𝜎𝑦

𝜕𝛿𝜆
+ 3𝜇𝑔(𝑑𝑛)

+ Δ𝜆
𝐽2(𝑠𝑡𝑟𝑖𝑎𝑙

𝑛+1 )

)︂
(12)

where �̄� = 3
2

𝑠
𝐽2(𝑠𝑛+1) and ⊗ is the outer product.

2.3. Adaptive remeshing strategy

An adaptive remeshing strategy developed in [28] is used in this algorithm. The main objective
is to refine the mesh automatically in the locations where the crack is expected to propagate. Two
main thresholds are introduced in order to achieve this purpose as follows:

• A remeshing indicator function: this is a metric that indicates when and where the mesh
should be refined. This function needs to properly describe the evolution of the crack [28].

• A volume quality control: this function is introduced in order to control the number of
remeshing operations and hence minimize the numerical loss associated with the transfer of
fields during remeshing.

The remeshing indicator function could be chosen as one of the following functions: (i). the phase
field function; (ii). the equivalent plastic strain; (iii). the normalized yielding function. In this
article, the equivalent plastic strain is used for all the numerical examples. The adaptive mesh
refinement helps in accurately resolving the phase field equation and also to reduce the computation
time throughout the simulation.

3. Crack insertion algorithm

In this section, a numerical strategy for the simulation of discrete crack insertion and propaga-
tion is presented within the context of Finite element analysis. The phase field solution provides
a highly concentrated damage field in which the crack surface can be identified as the points that
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have a phase field value of 1. However, due to the numerical approximation, the continuity con-
dition of the phase field gradient 1 leads to a diffused zone of the crack, i.e., there is a finite zone
that has a phase field value very close to 1 as can be seen in Fig. 3. In this work, we propose a
strategy that is based on the phase field gradient in order to identify the crack surface by com-
bining the phase field solution along with its gradient. The idea of our algorithm is to simplify
the crack surface identification methodology for three main reasons: (i). the search process must
be independent on the choice of model parameters such as the radius of the evaluation circle as
presented in [15]; (ii). the algorithm should be independent on the starting point, in other words,
an agnostic search of identifying the crack surfaces; (iii). to have an algorithm that can be used
for parallel computations by construction.

The other crucial point in the algorithm is the insertion of the discrete crack topology in the
mesh. A numerical strategy is designed for this purpose where it can divided in four main steps:
(i). an identification of the intersection between the crack surface and the finite element mesh; (ii).
a local modification of the mesh topology by partitioning the elements being intersected by the
crack surface; (iii). a new strategy based on the well known coloring algorithm in the graph theory
[29] is presented in order to duplicate the nodes that lie on the crack surface; (iv). a volumetric
remeshing operation is carried out in order to ensure a good quality of elements throughout the
computations. It is worth mentioning that there are other approaches in the literature that are
designed for similar purposes. For example, M. Shakoor et al. introduced in [30] a body-fitted
method for the modeling of ductile fracture simulations. In this work, a level set function is used
to define the void/matrix interface where the mesh is adapted accordingly.

Figure 3: Phase field computation on a finite element mesh. The vector field of the phase field gradient is shown
(top). The phase field along with the gradient components profiles projected on the X-Y plane are computed
(bottom).

1The continuity of the phase field solution and its gradient within the elements are imposed in the weak for-
mulation of the problem (See appendix A for more details). However, the solution of the homogeneous differential
equation of the phase field as shown in Fig. 1 shows that the gradient is undefined at the crack interface.
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3.1. Identification of crack surface intersection locations

Starting with the continuous phase field 𝑑, a point is identified to lie on the crack surface if it
satisfies the following two conditions: {︃

𝑉 𝑡∇𝑑 = 0 (13a)
𝑉 𝑡𝐻𝑒𝑠𝑠(𝑑)𝑉 = 0 (13b)

where 𝑉 is a 𝑛×𝑘 matrix in which 𝑛 is the dimension of the space and 𝑘 is the number of linearly
independent vectors that span the search space. The second condition is automatically satisfied
since the search process is limited in the region where the phase field is very close to 1 which is
convex by definition. In consequence, the satisfaction of condition 13a necessitates at least the
𝐶1 continuity of the phase field solution. This critical point represents a (n-1)-dimensional height
ridge in a n-dimensional space according to the definition of D. Eberly et al. in [31]. In other
words, the search space is restricted to a subspace spanned by a vector.

The crack surface identification algorithm can be explained in three main steps: (i). smoothing
the phase field gradient on all the mesh nodes; (ii). calculating the projection of the phase field
gradient along the vector connecting the two nodes (along the edge direction); (iii). identifying
the location on the edge that vanishes that gradient projection which represents a height ridge.
The selection of an edge to be tested should satisfy a condition of having a value of phase field
greater than a given threshold very close to 1 (normally the threshold is chosen to be 0.99) for at
least one of its two nodes as shown in Fig. 4. The search direction is chosen to be the unit vector
that is aligned along an edge in the mesh. The projection of the phase field gradient is calculated
as follows:

∇𝑑𝑝𝑟𝑜𝑗
𝑖,𝑗 = ∇𝑑𝑛𝑜𝑑𝑎𝑙

𝑖,𝑗 · �⃗� (14)

Figure 4: Selection of the candidate edges for the crack intersection.

where 𝑖 and 𝑗 are the node index, ∇𝑑𝑛𝑜𝑑𝑎𝑙
𝑖,𝑗 is the phase field gradient calculated at the nodes

𝑖, 𝑗, ∇𝑑𝑝𝑟𝑜𝑗
𝑖,𝑗 is the projection of the phase field calculated at nodes 𝑖, 𝑗 and �⃗� is the position unit
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vector as shown in Fig. 4. A linear interpolation in terms of the non-dimensional parameter 𝜔 is
given as:

∇𝑑𝑝𝑟𝑜𝑗
𝑖 + 𝜔𝑐 (∇𝑑𝑝𝑟𝑜𝑗

𝑗 − ∇𝑑𝑝𝑟𝑜𝑗
𝑖 ) = 0 (15)

where 𝜔𝑐 is a non-dimensional distance of the critical point calculated along the edge length.
Solving equation 15 for 𝜔𝑐 with the condition that 0 < 𝜔𝑐 < 1 gives the intersection of the crack
surface with the edge. Another condition is added to ensure that the material point at the selected
𝜔𝑐 has reached a maximum level of degradation as follows:

𝑑𝑛𝑜𝑑𝑎𝑙
𝑖 + 𝜔𝑐 (𝑑𝑛𝑜𝑑𝑎𝑙

𝑗 − 𝑑𝑛𝑜𝑑𝑎𝑙
𝑖 ) ≥ 0.99 (16)

Fig. 10a shows the identified locations of the intersection between the crack surface and the mesh
calculated using the presented strategy.

In the next section, the smoothing operation that transforms the phase field gradient from a
P0 (constant per element) to a P1 (nodal) field is presented.

3.2. Phase field gradient smoothness
In this section, a smoothing operation of the phase field gradient from a P0 field which is

constant per element to a nodal P1 field is achieved. The gradient calculation represents an
important part in the crack insertion algorithm as it is the essential component in the identification
of the crack surface intersection with the mesh. The aim is to reduce the numerical error during
the smoothing of fields in order to have a good resolution of the phase field gradient. Different
smoothing methods can be found in the literature [32, 33]. Two methods are used in this work:
(i). average smoothing method; (ii). Galerkin’s smoothing method.

3.2.1. Average smoothing method
This is the simplest method of a P0 field smoothing. The nodal phase field gradient ∇𝑑𝑛𝑜𝑑𝑎𝑙

𝑖 is
calculated as

∇𝑑𝑛𝑜𝑑𝑎𝑙
𝑖 =

∑︀𝑁𝑒𝑝

𝑖=1 ∇𝑑𝑒𝑙𝑒𝑚
𝑖

𝑁𝑒𝑝

(17)

where 𝑑𝑒𝑙𝑒𝑚
𝑖 is the phase field gradient calculated per element and 𝑁𝑒𝑝 is the total number of

elements in the patch of elements containing the node.

3.2.2. Galerkin’s smoothing method
The weak form of the transformation of the phase field gradient from a P0 field to a P1 field

(nodal) applied over an element gives∫︁
Ω
�⃗�ℎ∇𝑑𝑛𝑜𝑑𝑎𝑙 𝑑Ω =

∫︁
Ω
�⃗�ℎ∇𝑑𝑒𝑙𝑒𝑚 𝑑Ω (18)

The functions ∇𝑑𝑛𝑜𝑑𝑎𝑙 and �⃗�ℎ are defined as follows

�⃗�ℎ(�⃗�) =
𝑁𝑛∑︁
𝑘=1

𝑁𝑘(�⃗�)𝑐𝑘 (19a)

∇𝑑𝑛𝑜𝑑𝑎𝑙(�⃗�) =
𝑁𝑛∑︁
𝑘=1

𝑁𝑘(�⃗�) 𝑑𝑘 (19b)
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where �⃗�ℎ are the test functions, 𝑐𝑘 and 𝑑𝑘 are the degrees of freedom of the test and trial solutions,
respectively. 𝑁𝑘 are the same basis functions used in the finite element model and 𝑁𝑛 is the
number of basis functions.

3.2.3. Controlling the crack increment length
According to the Griffith criterion of fracture, an infinitesimal crack area increment 𝑑𝐴 can be

calculated as follows [1]
𝑑𝐴 = 𝑙𝑓 𝑑𝑎 = 𝑑𝜓𝑓𝑟𝑎𝑐

𝐺𝑐

(20)

where 𝑙𝑓 is the length of the crack front and 𝑑𝑎 is the crack increment length as shown in Fig. 5,
𝜓𝑓𝑟𝑎𝑐 is the fracture energy which is defined in the regularized form as follows:

𝜓𝑟𝑒𝑔
𝑓𝑟𝑎𝑐 =

∫︁
Ω

𝐺𝑐

2𝑙𝑐
(𝑑2 + 𝑙2𝑐 |∇𝑑|2) 𝑑Ω (21)

The effective crack area increment can be then calculated as

Δ𝐴𝑒𝑓𝑓 = 𝜓𝑟𝑒𝑔
𝑛+1 − 𝜓𝑟𝑒𝑔

𝑛

𝐺𝑐

(22)

Where the total effective crack area at increment 𝑛+ 1 can be calculated as

𝐴𝑒𝑓𝑓
𝑛+1 = 𝐴𝑒𝑓𝑓

𝑛 + Δ𝐴𝑒𝑓𝑓 (23)

The condition at which a crack increment is inserted is defined as follows:

𝐴𝑒𝑓𝑓
𝑛+1 ≥ 𝐴𝑓𝑖𝑥𝑒𝑑 (24)

where 𝐴𝑓𝑖𝑥𝑒𝑑 is a predefined parameter used to control the moment at which a crack increment
is inserted. The effect of the crack increment length on the crack propagation is studied in the
numerical examples in section 4.

Figure 5: Illustration of the surface topology of a crack increment.
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3.3. Fracture surface intersection by Sequence Agnostic Partitioning

In this step, the mesh topology is modified in order to insert new nodes at the identified
locations of the crack surface intersection. A local partitioning strategy is used in order to fit
the identified crack surface within the mesh topology, i.e., new nodes are added in the locations
of the intersection between the crack surfaces and the mesh. Assuming that the six edges of an
initial non-partitioned tetrahedron are intersected by the crack, the sequence of operations that
are carried out is explained in Fig. 6 as follows:

(i). the intersected non-partitioned element can be partitioned into four sub elements connected
by a volume node where edge nodes are inserted at the positions of the crack intersection with the
edges. The position of the volume node is calculated to be at the center of the crack surface that
passes through the non-partitioned tetrahedron, i.e., its coordinates are calculated as the average
of the coordinates of edge nodes.

(ii). additional face nodes are added on each face of the tetrahedron. The face nodes are added
in order to ensure a unique partitioning scheme and to eliminate the possibility of having more
than one admissible partitioning scheme as illustrated in Fig. 7. If two intersections are identified
on one face, there will be two possibilities for the new mesh configuration. On the other hand,
adding a face node gives a unique mesh topology. Although it is not the scope of this paper, it
is worth mentioning that the unique partitioning strategy is also suitable for our parallelization
strategy where a SMPD (single program on multiple data) [34] is used. Using this strategy, every
processor contains a partition of elements in the mesh in which the interface nodes are shared
between the neighbouring partitions. The uniqueness of the partitioning strategy helps in getting
rid of any ambiguity about the partitioning of the shared elements between different processors.
This partitioning strategy leads to a total number of 24 new partitioned elements where all the
added nodes lie on the crack surface.

In practice, the number of crack intersections for each edge in the mesh depends on the detected
crack path. Therefore, the next step is to merge the edges that do not contain any intersection
so that the two elements sharing these edges are compacted to one element. In addition, for the
face that does not have any intersections on one of the edges, all the elements sharing this face are
compacted to form only one element. The final topology of the patch will only have edge and face
nodes where there is at least one edge intersection on the face.
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Figure 6: Mesh partitioning strategy used to fit the crack surface with the mesh.

In Fig. 8a, three intersections have been identified, the topology of the new partitioned elements
is shown in Fig. 8b where the coordinates of face and element nodes are calculated according to
the mentioned rules. Six crack faces are identified in this configuration where each face contains
an edge node, face node and the volume node. The next step is the duplication of nodes that
belong to the crack faces in order to open the crack surfaces. It can be seen that each partitioned
element cannot have more than one crack face by construction. This feature is very important as
it leads to a unique description of the crack surface in the case of crack bifurcation.

Figure 7: A comparison between the unique and face partitioning schemes.
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Figure 8: The strategy of identifying the crack faces

Fig. 10b shows how the mesh topology is modified in order to fit the crack surface within the
mesh.

3.4. Nodal duplication by virtual non-manifold patch repair

In this part, the nodes that belong to the crack surfaces should be duplicated. The aim of this
step is to open the crack surfaces in order to simulate the decohesion process. Once a crack face
is identified within a manifold patch, it becomes a non-manifold in the sense that it becomes a
non-continuous patch. The graph coloring algorithm widely used in the graph theory is adopted
for this purpose. In graph coloring, a vertex or face is assigned a unique color so that no adjacent
one can have the same color, see [29]. In our case, the patch around each node that needs to be
duplicated is analyzed. Each connected patch of elements should have the same color. The color
is changed once a crack face separates two patches. Finally, each node is duplicated according to
the number of colors associated to the patches connected to it.

In order to illustrate the algorithm, Fig. 9 shows three mesh patches of triangular elements in
2D showing the three possible scenarios of nodal duplication (the generalization to 3D is straight-
forward). A crack face is identified as the surface that connects two nodes (three nodes for a
tetrahedral element in 3D) as described by the sequence agnostic partitioning strategy. In the first
patch 9a, one crack face is identified which leads to a partially cracked patch. Starting with a loop
around a test node, two elements are connected to the node having a crack face in common. Each
element takes a different color leading to two copies of this node, one copy for each disconnected
patch. The second test node is not duplicated since all the attached elements have the same color,
so it represents the crack tip. The second patch as shown in Fig. 9b contains two crack faces.
This results in having two copies of the first test node leading to a crack opening in the initial
patch. Then, a second test node will also have two copies leading to a second opening of the crack
surfaces in the patch. The last test node is then duplicated in order to totally separate the two
patches leading to a fully cracked patch. A third patch shown in Fig. 9c contains three crack faces
leading to a bifurcation of the crack path. These faces contain four nodes that lie on the crack
surface. Starting with an initial test node, the same initial crack path is obtained as the partially
and fully cracked patches. However, the analysis of the second node leads to three different colors
since there are two crack faces. Hence, three copies are made of this central node. Finally, the
third and forth test nodes are duplicated to two copies leading to a final crack bifurcation.
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Figure 9: Illustration of the use of the coloring algorithm for the nodal duplication

Fig. 10c shows an example of the use of the coloring algorithm for the nodal duplication and
the opening of the crack surfaces.

Figure 10: Illustration of the main operations of the crack insertion algorithm. Crack identification in (a), mesh
modification in (b) and nodal duplication followed by volumetric remeshing in (c).
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3.5. Summary

A summary of the developed method is presented in flowchart in Fig. 11.

Figure 11: Flow chart of the crack insertion algorithm CIPFAR.

4. Numerical examples

In this section, three numerical examples are presented in order to show the ability of the
developed algorithm to describe the crack initiation and propagation. All the mechanical and
phase field computations are carried out using tetrahedral elements. The staggered algorithm [35]
is used in order to decouple the mechanical and phase field equations (more details are found in
appendix A.

4.1. Double notched symmetric specimen

In this example, first mode of ductile fracture is demonstrated using a symmetric specimen
with double notches subjected to tensile loading. Fig. 12 shows the geometry and boundary
conditions of the specimen where the thickness is 1 mm. A linear hardening law described in eq.
9a is used. The material and model parameters are as follows: 𝐸 = 200 GPa, 𝜈 = 0.3, 𝜎0 = 300
MPa, 𝐻 = 600 MPa, 𝐺𝑐 = 5𝑘𝐽/𝑚2, 𝛽1 = 𝛽2 = 1, plastic threshold 𝑊0 = 5 MPa and a time step
of 0.5 sec until the maximum value of the phase field reaches 0.1 and 0.125 sec for the rest of the
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simulation in order to ensure the convergence of the solution. An initial mesh size of 1 mm in used
everywhere in the mesh. The mesh is refined in the damaged zone based on the equivalent plastic
deformation as described by the adaptive remeshing algorithm in section 2.3. A comparison is
done between coarse and fine meshes with the smallest mesh sizes ℎ𝑚𝑖𝑛 as 0.4 mm, 0.3 mm and
0.2 mm, respectively where length scale 𝑙𝑐 is set as 0.8 mm . The effective crack area 𝐴𝑓𝑖𝑥𝑒𝑑 is set
to 0.5 mm2 for all the examples.

Figure 12: Geometry and boundary conditions of a double notched symmetric specimen.

The phase field evolution and discrete crack surfaces propagation at three different displace-
ments are illustrated in Fig. 13 for different mesh sizes. It can be observed that the actual crack
path follows the implicit crack path predicted by the evolution of the phase field until the final
rupture of the specimen. Although the intermediate crack evolution process is slightly different for
the different mesh sizes, the same crack path is obtained at the final rupture for the three mesh
sizes. These slight differences can be explained by the increase of the accuracy of mechanical and
phase field resolutions with the mesh refinement.

Fig. 14 shows the force vs. displacement curves for different mesh sizes with a comparison
between the discrete crack propagation and fixed mesh computations. Two main conclusions can be
drawn: (i). a convergence behaviour is observed with the reduction of mesh size which is coherent
with the characteristic features of the implicit gradient-based non-local damage formulations; (ii).
a numerical diffusion due to remeshing is also observed for the discrete crack propagation cases,
however, a similar convergence behaviour with the reduction of mesh size is observed as the fixed
mesh computations. It should be noted that the slight deviations from the equilibrium path after
each remeshing step leads to a final deviation in the force vs. displacement curve. This numerical
diffusion is due to the transport of mechanical fields after each remeshing operation.

The effect of adaptive remeshing threshold on the force vs. displacement curves is shown in
Fig. 15 with a comparison with the fixed mesh computations without neither adaptive remeshing
nor discrete crack propagation. It can be shown that when the remeshing threshold is reduced,
the deviation between the fixed mesh and discrete crack propagation solutions is reduced. This
can be explained by the fact that when mesh refinement process is initiated earlier, the mechanical
resolution becomes more accurate in capturing the moment of crack initiation. The deviation of
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the total strain energy in the case of discrete crack insertion as compared to the fixed mesh case
is shown in table 1. In the next presented cases, a remeshing threshold of 0.005 is used.

Figure 13: Phase field evolution showing the crack initiation and propagation until the final rupture.
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Figure 14: Force vs. displacement curves for different mesh sizes with a comparison with the fixed mesh compu-
tations.

Figure 15: Force vs. displacement curves for different remeshing thresholds where the adaptive mesh refinement
is based on the equivalent plastic strain.

Table 1: The effect of remeshing threshold on the total strain energy

Remeshing threshold Total strain energy 𝐽 Deviation
%

0.05 0.281 12.75
0.01 0.263 6.67
0.005 0.259 5.1

The effect of crack increment length threshold on the force vs. displacement curves is shown
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in Fig. 16. Results are compared with pre-refined fixed mesh computations which is considered as
the reference case. It is worth mentioning that the discrete crack insertion has a negligible effect
on the mechanical resolution since the material is totally damaged before the insertion of the crack
increment. Slight deviations between the curves are observed after the crack initiation moment.
This result is directly related to the numerical diffusion that increases with the increase of the
number of remeshing operations as shown on the figure. It can be also shown in Fig. 17 that the
final crack paths are very similar for the different crack increment lengths. This result is consistent
with the fact that the discrete crack path follows the phase field evolution which is independent
on the choice of the crack increment length.

Figure 16: Force vs. displacement curves for different crack increment lengths.

Figure 17: Final crack surface for different crack increment lengths.

As suggested in [35], the effect of stress triaxiality 𝜂 in the prediction of damage localization and
hence the crack evolution is important. In order to test this effect, the same proposed modification
is added to the plastic energy 𝑊𝑝 that appears in the local history functional by adding a stress
triaxiality function 𝜑(𝜂). The stress triaxiality is defined as follows 𝜂 = −𝑝

‖𝑠‖ . The rate form of the
plastic strain energy becomes as follows

�̇� 𝑒𝑓𝑓
𝑝 = �̇�𝑝

𝜑(𝜂) (25)

where 𝑊 𝑒𝑓𝑓
𝑝 is the effective plastic energy. For the sake of demonstration, the same form and

parameters of the triaxiality function are taken as mentioned in the reference [35] which is shown
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as follows
𝜑(𝜂) = 𝑑1 + 𝑑2 𝑒

𝑑3 𝜂 (26)
with 𝑑1 = 0.1, 𝑑2 = 3.8 and 𝑑3 = −1.8.

Fig. 18 shows the phase field evolution and discrete crack surface propagation with and without
the effect of stress triaxiality, in other words, without adding the stress triaxiality function. All the
material and model parameters are fixed for both cases except the effect of the stress triaxiality.
When the effect of stress triaxiality is added, it can be shown that the internal crack initiation
occurs far from the notch boundary which is the location of maximum stress triaxiality. The same
result was observed in [35] which was also qualitatively confirmed by the experimental observations
reported in [36].

Figure 18: The effect of triaxiality function on the initiation and propagation of discrete crack surface.

The developed algorithm is able to describe the full cracking process starting with the initiation
at the expected locations until the formation of the complete crack surface leading to the separation
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of the initial specimen into two pieces. In addition, the final crack paths are independent on the
mesh size given that the mesh size is small enough for a good resolution of the phase field equations.

4.2. Double notched asymmetric specimen

In this example, a mixed mode fracture is simulated in order to prove the ability of the algorithm
to deal with complex cracking pattern with multiple initiation sites. The geometry and boundary
condition along with the initial mesh are shown in Fig. 19 as in [5, 9]. The initial mesh size is
set to 0.4 mm. Using the adaptive remeshing algorithm, the mesh size is reduced in the regions
where the crack is expected to propagate where the equivalent plastic strain is used as an indicator
function with a threshold of 0.01. A linear hardening law described in 9a is used. The material
parameters are : 𝐸 = 180 GPa, 𝜈 = 0.28, 𝐻 = 300 MPa, 𝜎0 = 443 MPa. The model parameters
are: 𝑙𝑐 = 0.4 mm, 𝛽1 = 0 and 𝛽2 = 1. The other model parameters 𝐺𝑐 and 𝑊0 are varied in order
to show their effect on the phase field evolution.

The time step is set to 0.01 sec in the beginning of the simulation until and then reduced to
a minimum time step Δ𝑡𝑚𝑖𝑛 once the maximum value of the phase field reaches 0.1. A time step
convergence study is shown in Fig. 20 with the following model parameters 𝐺𝑐 = 5 𝑘𝐽/𝑚2 and
𝑊0 = 10 MPa. A convergence behaviour is observed with respect to the time step most notably
for the values less than 0.00625 sec which will be used in all the following simulations. The crack
increment length is fixed at 0.5 mm in all the presented examples.

Figure 19: The geometry and boundary conditions along with the mesh of an asymmetric double notched specimen.
The thickness of the specimen is set to 1 mm.

Figures 21 and 22 show the phase field evolution and discrete crack surface propagation at
three different displacements for coarse and fine meshes of element sizes of 0.2 mm and 0.05 mm,
respectively. From a global point of view, it can be shown that the crack initiation and propagation
in both cases are very similar. However, a better resolution of the quality of the crack surface is
observed with the fine mesh. This result is coherent with the fact the the order of approximation of
the crack surfaces prediction follows the order of finite element approximation where linear elements
are adopted in this study. Fig. 23 shows the force vs. displacement curves for three different mesh
sizes where a convergence behaviour is observed when the mesh is sufficiently refined.
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Figure 20: Convergence of the Force vs. displacement curve with respect to the reduction in the time step.

Figure 21: Phase field evolution accompanied with the crack path propagation at three different displacements
using two different mesh sizes.
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Figure 22: Crack surfaces evolution in 3D at three different displacements using two different mesh sizes.

Figure 23: A comparison between three mesh sizes on the Force vs. displacement curves.
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Fig. 24 shows the effect of stress triaxiality on the initiation of the phase field and hence the
discrete crack surface at different values of the plastic threshold 𝑊0. The phase field profile is
shown at a cross section that cuts the upper notch of the specimen. The same modification to
the local history functional ℋ as in 4.1 is done by adding a stress triaxiality function 𝜑(𝜂). It
is clear that without adding the effect of stress triaxiality, the crack is always initiated at the
boundary of the upper notch. On the other hand, an internal crack is initiated far from the notch
boundary which follows the onset of crack initiation predicted by the phase field evolution. The
force vs. displacement curves that show the effect of plastic threshold 𝑊0 on the results are plotted
in Fig. 25 where the the effect of the parameter on the delay of crack initiation point is clearly
demonstrated.

Figure 24: The crack initiation at different values of the plastic threshold 𝑊0. Results are shown without the
effect of stress triaxiality (up) and with the effect of stress triaxiality (bottom).
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Figure 25: The force vs. displacement curves for different values of the plastic threshold 𝑊0.

Another study is carried out in order to see the effect of the fracture toughness 𝐺𝑐 on the
onset of crack initiation. Fig. 26 shows the force vs. displacement curves for different values of
𝐺𝑐 where crack initiation moments are identified by the arrows. It can be shown that when the
value of the fracture toughness increases, which is typical in ductile materials, the crack initiation
is delayed which is in contrast to brittle materials where the crack initiation happens just after
reaching the peak stress. This can be explained by the fact that in ductile fracture, the amount
of plastic energy dissipation is much larger than the amount of energy needed to create new crack
surfaces. In other words, the crack is initiated at a high plastic strain level. In the current phase
field model, this feature is related to the degradation of the yielding surface that appears in eq. 7b
so that the phase field evolution is dominated by the plastic strains. These results are confirmed
with the experimental tests shown in [36]. Fig. 27 shows the final discrete crack paths obtained for
different values of the fracture toughness. The main observation is that the crack path becomes
straight for the ductile fracture patterns .i.e., when 𝐺𝑐 increases. This can be explained by the fact
that ductile materials fail in the zones of high plastic deformation which is the zone that connects
the two notches by a straight line.

Figure 26: The force vs. displacement curves for different values of fracture toughness showing the onset of crack
initiation using the crack insertion algorithm.
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Figure 27: The final crack path obtained for different values of fracture toughness 𝐺𝑐.

The developed strategy serves as an efficient tool in the transition between damage to fracture
in ductile materials. The replacement of the crack topology described by the phase field model
with a discrete crack in the material. In addition, the degradation of the yielding surface leads to
the same mechanical response observed experimentally due to the contribution of the plastic strain
in the evolution of the phase field and hence, damaging the material prior to crack initiation.

4.3. Flat tensile specimen

In this example, the crack insertion algorithm is used to predict an internal crack initiation in
a flat tensile specimen described in [6]. The geometry and boundary conditions are shown in Fig.
28 where the loading is carried out with a constant velocity of 0.01 mm/sec. A time step of 2 sec
is used until the maximum phase field value reaches 0.1 and reduced to 0.4 sec for the rest of the
simulation. The effective crack area 𝐴𝑓𝑖𝑥𝑒𝑑 is set to 0.5 mm2 for all the simulations. A non-linear
hardening law described by equation 9b with the material and model parameters presented in table
2 are used. The equivalent plastic strain is used as an indicator function for the mesh refinement
with a threshold of 0.05. A fine mesh with smallest element size of 0.25 mm and a coarse mesh
with a smallest element size of 0.5 mm are used for the comparison. The characteristic length scale
𝑙𝑐 is set as two times the minimum element length.

Fig 29 where the plastic threshold is set to 10 MPa shows the crack initiation at the center of
the specimen which agrees with the experimental observation in [6] shown in Fig. 33. Then, the
crack propagates in a direction perpendicular to the loading direction leading to the final failure
of the specimen. A final curvature of the crack surface is also confirmed by the experiments. It is
clear that the crack surface follows the evolution of the equivalent plastic strain which is expected
in ductile fracture. The evolution of the crack surface can also be shown in Fig. 29. A full descrip-
tion of the crack initiation and propagation can be accurately described by the algorithm. Fig. 30
shows the evolution of the phase field along with the crack surface where the plastic threshold is
set to 15 MPa. It can be observed the same cracking pattern as in the previous case with a similar
evolution of the crack surface in 3D.
The cracking simulation on a coarse mesh is simulated in Fig. 31. The crack is initiated at the
center of the specimen where the plastic deformation is localized. However, the final crack path
is straight, contrary to what is observed with the fine mesh. The force vs. displacement curves
for the three cases can be seen in Fig. 34. The increase in the plastic threshold leads to a crack
initiation at a larger displacement.
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Finally, another simulation is carried out in order to test the effect of the remeshing indicator
function on the cracking process. The phase field is used as an indicator for the mesh refinement
process with a threshold of 0.05 and the results are reported in Fig. 31 where a minimum element
size of 0.25 mm is obtained in the refined zone. Comparing the results with the results obtained
in Fig. 29 shows an inclination in the final crack path. It can be also observed that the evolution
of the crack path follows the evolution of the equivalent plastic strain as expected. The reason for
this observation is that the phase field evolution starts once the effective plastic exceeds the plastic
threshold. In consequence, using the phase field threshold leads to a delay in the mesh refinement
in the damaged zone and hence an inaccurate resolution of the plastic strains. This issue has been
extensively studied in [28].
The developed algorithm is able to accurately predict the crack initiation location with good
agreement with experimental observation. Once the phase field model parameters are well cali-
brated, a good matching in terms of final crack path and force vs. displacement response with the
experiments can be achieved.

Figure 28: Geometry and boundary conditions of a flat tensile specimen [6].
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Table 2: Material and phase field model parameters [6]

Quantity Value Unit
Young’s modulus, E 65200 MPa

Poisson’s ratio, 𝜈 0.26
Yield stress, 𝜎0 209.6 MPa

Ultimate strength, 𝜎∞ 62.6 MPa
Saturation coefficient, 𝛿 38.81

Weighing parameters, 𝛽1, 𝛽2 1.0
Plastic threshold, 𝑊0 10/15 MPa

Fracture toughness, 𝐺𝑐 50 𝑘𝐽/𝑚2

Characteristic length scale 𝑙𝑐 0.5 or 1.0 mm

Figure 29: The evolution of phase field, equivalent plastic strain (EQP) and the crack surface evolution in 3D at
three different different displacements. The initiation, and propagation of the crack are properly predicted where
the curvature of the crack lips matches the experimental observations [5]. Minimum element size = 0.25 mm (fine
mesh) with a plastic threshold = 10 MPa.
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Figure 30: The evolution of phase field, equivalent plastic strain (EQP) and the crack surface evolution in 3D at
three displacements. The initiation, and propagation of the crack are properly predicted where the curvature of the
crack lips matches the experimental observations [5]. Minimum element size = 0.25 mm (fine mesh) with a plastic
threshold = 15 MPa.

Figure 31: The evolution of phase field, equivalent plastic strain (EQP) and the crack surface evolution in 3D
at three displacements. The initiation, and propagation of the crack are predicted with less curvature of the crack
lips as observed experimentally [6]. Minimum element size = 0.5 mm (Coarse mesh) with a plastic threshold = 10
MPa.
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Figure 32: The evolution of phase field along with the effective plastic deformation EQP at three different
displacements. The phase field is used an indicator function for the mesh refinement with a threshold of 0.05 as
indicated in [28]. The final crack path is inconsistent with the experimental observations reported in [6].

Figure 33: Experimental results showing the initiation and propagation of the crack till the final fracture [6]

Figure 34: The force vs. displacement curves for fine and coarse meshes.
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5. Conclusion and perspectives

The main objective of this article was to introduce a new algorithm of crack insertion in 3D
ductile media called CIPFAR. The algorithm uses a combination of the phase field model adapted
for ductile fracture and adaptive remeshing tools. First, an adaptive remeshing strategy is used in
order to sufficiently refine the mesh where the crack is expected to propagate. Then, an agnostic
crack surface identification method is developed in order to find the intersection of the discrete
crack surface with the mesh edges. The method has its root in the domain of image processing
and particularly in the edge detection. Next, a unique mesh partitioning strategy is developed in
order to locally divide an initial element where the crack surface is expected to cross. Two main
advantages arise from the proposed partitioning scheme: (i). the uniqueness of the partitioned
elements facilitates the algorithm parallelization; (ii). the algorithm is highly efficient because the
partitioning scheme has a linear proportionality to the number of intersected elements, making
it perfectly scalable. The next step is the nodal duplication in order to simulate the decohesion
of the crack lips. In this regard, the coloring algorithm is used in order to locally determine the
number of copies and the elements sharing each copy in what we call a non-manifold mesh repair.
Once the crack surfaces are opened, the same operations are repeated until the final crack path is
obtained.
Three numerical examples are presented in this article. First, a symmetrically double-notched
specimen is used in order to simulate the first mode of fracture. The results have shown that
the crack is initiated at the two notches simultaneously and propagated toward the center until
the specimen complete fracture is reached. Second, a mixed fracture mode is simulated through
a non symmetrically double-notched specimen. It has been shown that two cracks initiate at the
two notches and propagate in a curved path toward the center of the specimen which can be
observed experimentally. Finally, a flat tensile specimen is tested and results are compared with
experimental observations. The main aim of this example was to show the crack initiation at the
center of the specimen and the propagation of the crack leading to a horizontal final path with
some curvature of the crack lips. In the three examples, a parametric study is carried out to see
the effect of phase field and crack insertion models parameters, as well as the effect of mesh size
on the final crack path as well as the force vs. displacement curves. The three examples show
the robustness of the developed strategy to handle damage to fracture transition in a 3D parallel
environment.
The current results are very encouraging to be applied to much complex examples of ductile
fracture. The future work is mainly based on two main axes: (i). testing the developed algorithm
on metal forming applications in which the crack paths are more complex and the damage evolution
depends on the state of the stress such as the stress triaxiality, the Lode parameter and the
maximum principal stress; (ii). validation of the numerical model with more experimental results.

Appendices
A. Weak formulation of the problem

In this section, the weak form of the phase field for ductile fracture and mechanical equations is
demonstrated within the framework of mixed velocity/pressure formulation. The strong form of
mechanical equations is written as
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𝜕𝑡
= ∇⃗ · 𝑠 − ∇⃗𝑝+ 𝜌�⃗� (Conservation of linear momentum)

∇⃗ · �⃗� = − �̇�

𝜅
(Conservation of mass)

�⃗� = ⃗̄𝑣0 on 𝜕Ω𝑣 (Dirichlet boundary condition)

�⃗� = ⃗̄𝑡0 on 𝜕Ω𝑡 (Neumann boundary condition)

(27a)

(27b)

(27c)

(27d)

𝜕Ωℎ = 𝜕Ω𝑣 ∪ 𝜕Ω𝑡

where 𝑠 is the deviatoric part of the Cauchy stress tensor, 𝑝 is the pressure, �⃗� is the velocity
vector, 𝜅 is the bulk’s modulus, 𝜌 is the material density and �⃗� is the body force vector per unit
mass. The boundary conditions are illustrated in Fig. 2. Ωℎ is the solid domain in the current
configuration, 𝜕Ω𝑣 and 𝜕Ω𝑡 are the predefined boundaries for Dirichlet and Neumann boundary
conditions, respectively. The finite element method is used to solve the system of equations 4a
and 27. Following the standard Galerkin formulation by multiplying the strong form of partial
differential equations by the appropriate test functions leads to the weak form of the following
problem:
Find (�⃗�ℎ, 𝑝ℎ and 𝑑ℎ) ∈ 𝒱ℎ ⊗ 𝒫ℎ ⊗ 𝒟ℎ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︁
Ωℎ

(︂
𝜌
𝜕�⃗�ℎ

𝜕𝑡
· 𝑣ℎ

* + 𝑠(𝑣ℎ) : �̇�(𝑣ℎ
*) − 𝑝ℎ∇⃗ · 𝑣ℎ

* − 𝜌�⃗� · 𝑣ℎ
*
)︂
𝑑Ωℎ =

∫︁
𝜕Ω𝑡

𝑡0 · 𝑣ℎ
* 𝑑𝜕Ωℎ (28a)∫︁

Ωℎ

𝑝*
ℎ ∇⃗ · 𝑣ℎ + 𝑝*

ℎ �̇�ℎ

𝜅
𝑑Ωℎ = 0 (28b)∫︁

Ωℎ

𝐺𝑐

𝑙𝑐
𝑑*

ℎ 𝑑ℎ +
∫︁

Ωℎ

𝐺𝑐 𝑙𝑐 ∇𝑑*
ℎ · ∇𝑑ℎ 𝑑Ωℎ −

∫︁
Ωℎ

𝑑*
ℎ ℋ 𝑑Ωℎ = 0 (28c)

∀𝑣*
ℎ, 𝑝

*
ℎ, 𝑑

*
ℎ ∈ 𝒱0

ℎ ⊗ 𝒫0
ℎ ⊗ 𝒟0

ℎ (28d)

𝒱ℎ =
{︂
�⃗�ℎ ∈ (𝐻1)𝑑𝑖𝑚(Ωℎ), �⃗�ℎ = �⃗�0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂
𝒫ℎ =

{︂
𝑝ℎ ∈ (𝒞0)𝑑𝑖𝑚(Ω𝑒) ∩ 𝐿2, 𝑝ℎ ∈ 𝑃 1 in Ω𝑒, 𝑝ℎ = 𝑝0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂
𝒟ℎ =

{︂
𝑑*

ℎ ∈ (𝒞0)𝑑𝑖𝑚(Ωℎ) ∩𝐻1, 𝑑ℎ ∈ 𝑃 1 in Ω𝑒, 𝑑ℎ = 𝑑0 on 𝜕Ω𝑒, ∀𝑒 ∈ 𝑁𝑒

}︂
𝒱0

ℎ =
{︂
�⃗�*

ℎ ∈ 𝒱ℎ, �⃗�ℎ = 0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂
𝒫0

ℎ =
{︂
𝑝*

ℎ ∈ 𝒫ℎ, 𝑝ℎ = 0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂
𝒟0

ℎ =
{︂
𝑑*

ℎ ∈ 𝒟ℎ, 𝑑ℎ = 0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂
the test functions are chosen to be the variations of the unknown variables so that the kinematic
admissibility conditions are satisfied at the boundaries. Ωℎ is the volume of a finite element mesh
at the current configuration so that

Ωℎ =
⋃︁
𝑒

Ω𝑒 (𝑒 ∈ 𝑁𝑒)

where 𝑁𝑒 is the number of elements in the mesh.
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A.1. Finite element model

In order to ensure the well-posedness and stability of the numerical solution, a bubble function
is introduced to enrich the velocity field. The bubble function should have a value of 1 at the
center of the element and vanishes at the boundaries, the resulting velocity and pressure fields of
an element in the mesh can be expressed as

�⃗�ℎ = �⃗�𝑙 + �⃗�𝑏 =
𝑁𝑛∑︁
𝑘=1

𝑁𝑘
𝑙 𝑣𝑙

𝑘 +
𝑁𝑒∑︁
𝑗=1

𝑁𝑘
𝑏 �⃗�

𝑘
𝑏 (29a)

𝑝ℎ =
𝑁𝑛∑︁
𝑘=1

𝑁𝑘
𝑙 𝑃

𝑘 (29b)

𝑑ℎ =
𝑁𝑛∑︁
𝑘=1

𝑁𝑘
𝑙 𝑑

𝑘 (29c)

where 𝑁𝑘
𝑙 and 𝑁𝑘

𝑏 are the base and bubble interpolation functions associated with node 𝑘,
respectively. 𝑁𝑒 and 𝑁𝑛 are the number of elements and nodes respectively. The resulting system
of equations can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︁
Ωℎ

𝜌
𝜕�⃗�𝑙

𝜕𝑡
· 𝑣𝑙

* + 𝑠(𝑣𝑙) : �̇�(𝑣𝑙
*) − 𝑝ℎ∇⃗ · 𝑣𝑙

* − 𝜌�⃗� · 𝑣𝑙
* 𝑑Ωℎ =

∫︁
𝜕Ω𝑡

𝑡0 · 𝑣𝑙
* 𝑑Ωℎ (30a)∫︁

Ωℎ

𝜌
𝜕�⃗�𝑏

𝜕𝑡
· 𝑣𝑏

* + 𝑠(𝑣𝑏) : �̇�(𝑣𝑏) − 𝑝ℎ∇⃗ · 𝑣𝑏 𝑑Ωℎ =
∫︁

Ωℎ

𝜌�⃗� · 𝑣𝑏
* 𝑑Ωℎ (30b)∫︁

Ωℎ

𝑝*
ℎ ∇⃗ · (𝑣𝑙 + 𝑣𝑏) + 𝑝*

ℎ �̇�ℎ

𝜅
𝑑Ωℎ = 0 (30c)∫︁

Ωℎ

𝐺𝑐

𝑙𝑐
𝑑*

ℎ 𝑑ℎ𝑑Ωℎ +
∫︁

Ωℎ

𝐺𝑐 𝑙𝑐
𝜕𝑑ℎ

𝜕�⃗�
· 𝜕𝑑

*
ℎ

𝜕�⃗�
𝑑Ωℎ +

∫︁
Ωℎ

𝑑*
ℎ 𝑔

′
𝑒(𝑑ℎ)ℋ 𝑑Ωℎ = 0 (30d)

∀(𝑣𝑙
*, 𝑣𝑏

*, 𝑝*
ℎ, 𝑑

*
ℎ) ∈ ℒ0

𝑙 ⊗ ℒ0
𝑏 ⊗ 𝒫0

ℎ ⊗ 𝒟0
ℎ (30e)

ℒ0
𝑙 =

{︂
𝑣𝑙

* ∈ (𝒞0)𝑑𝑖𝑚(Ω𝑒) ∩ 𝒱0
𝑙 , 𝑣𝑙

* ∈ 𝑃 1 in Ω𝑒, 𝑣𝑙
* = 0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂
ℒ0

𝑏 =
{︂
𝑣𝑏

* ∈ (𝒞0)𝑑𝑖𝑚(Ωℎ), 𝑣𝑏
* ∈ 𝑃 1 in Ω𝑒, 𝑣𝑏

* = 0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂

with the following properties taken into account:
∫︀

𝜕𝜔𝑡
𝑡0 · 𝑣𝑏

* 𝑑𝜔ℎ = 0 since the bubble function
vanishes at the boundaries, the inertial contribution of the bubble part is neglected so that

∫︀
𝜔ℎ
𝜌𝜕�⃗�𝑙

𝜕𝑡
·

𝑣𝑏
* 𝑑Ωℎ =

∫︀
𝜔ℎ
𝜌𝜕�⃗�𝑏

𝜕𝑡
· 𝑣𝑙

* 𝑑Ωℎ = 0 and
∫︀

Ωℎ
𝑠(𝑣𝑏) : �̇�(𝑣𝑙

*) 𝑑𝜔ℎ =
∫︀

𝜔ℎ
𝑠(𝑣𝑙) : �̇�(𝑣𝑏

*) 𝑑Ωℎ = 0 due to the
orthogonality property of the bubble and nodal spaces. The time derivative of the velocity is
approximated as follows

𝜕�⃗�𝑙,𝑏

𝜕𝑡
=
�⃗� 𝑡+Δ𝑡

𝑙,𝑏 − 𝑣𝑙,𝑏
𝑡

Δ𝑡
where Δ𝑡 is the time step. Substituting equations 29 and A.1 in A.2, the final form of the residual
equations can be written on the following form:
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𝑅𝑙𝑙 + 𝑅𝑙𝑝 = 0 (31a)
𝑅𝑏𝑏 + 𝑅𝑏𝑝 = 0 (31b)

𝑅𝑝𝑙 + 𝑅𝑝𝑏 + 𝑅𝑝𝑝 = 0 (31c)
𝑅𝑑𝑑 + 𝑅𝑑𝑙 = 0 (31d)

where 𝑅𝑥𝑦 is the residual force vector of coupled set of unknowns 𝑥 and 𝑦. The system of equations
in 31 will be solved in a staggered manner. A Newton Raphson nonlinear solver is used to solve
the system of the first three equations before each remeshing step. Then, the fourth equation will
be solved independently. It is worth noting that the system of equations 31a, 31b and 31c are
condensated so that the final unknowns become the velocities and pressures at the nodes without
the need to explicitly solve for the bubble velocities.
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